Tensor based morphometry (TBM) was applied to determine the atrophy of deep gray matter (DGM) structures in 88 relapsing multiple sclerosis (MS) patients. For group analysis of atrophy, an unbiased atlas was constructed from 20 normal brains. The MS brain images were co-registered with the unbiased atlas using a symmetric inverse consistent nonlinear registration. These studies demonstrate significant atrophy of thalamus, caudate nucleus, and putamen even at a modest clinical disability, as assessed by the expanded disability status score (EDSS). A significant correlation between atrophy and EDSS was observed for different DGM structures: (thalamus: r=-0.51, p=3.85 x 10(-7); caudate nucleus: r=-0.43, p=2.35 x 10(-5); putamen: r=-0.36, p=6.12 x 10(-6)). Atrophy of these structures also correlated with 1) T2 hyperintense lesion volumes (thalamus: r=-0.56, p=9.96 x 10(-9); caudate nucleus: r=-0.31, p=3.10 x 10(-3); putamen: r=-0.50, p=6.06 x 10(-7)), 2) T1 hypointense lesion volumes (thalamus: r=-0.61, p=2.29 x 10(-10); caudate nucleus: r=-0.35, p=9.51 x 10(-4); putamen: r=-0.43, p=3.51 x 10(-5)), and 3) normalized CSF volume (thalamus: r=-0.66, p=3.55 x 10(-12); caudate nucleus: r=-0.52, p=2.31 x 10(-7), and putamen: r=-0.66, r=2.13 x 10(-12)). More severe atrophy was observed mainly in thalamus at higher EDSS. These studies appear to suggest a link between the white matter damage and DGM atrophy in MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744867 | PMC |
http://dx.doi.org/10.1016/j.jns.2008.12.035 | DOI Listing |
Eur Arch Psychiatry Clin Neurosci
December 2024
Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe Shosse 34, 115522, Moscow, Russia.
Previously we found altered microglia-neuron interactions in the prefrontal cortex in schizophrenia. We hypothesized that microglia-neuron interactions may be dysregulated in the caudate nucleus in schizophrenia. A postmortem ultrastructural morphometric study was performed to investigate satellite microglia (SatMg) and adjacent neurons in the head of the caudate nucleus in 21 cases of schizophrenia and 20 healthy controls.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiology, First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, 116011, Dalian, China.
Our study aimed to investigate the relationship between δ-catenin expression and whole-brain small-world network in breast cancer patients before chemotherapy using rs-fMRI. The study was based on the hypothesis that different δ-catenin expression levels correspond to distinct brain imaging characteristics. A total of 105 pathologically confirmed breast cancer patients were collected and categorized into high δ-catenin expression (DH, 52 cases) and low expression (DL, 53 cases) groups.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Neurology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
Background: Diabetic striatopathy (DS) is a rare disorder characterized by clinical manifestations of hemichorea, non-ketotic hyperglycemia, and high signal on T1-weighted MRI or high density on CT scan in basal ganglia, typically associated with poor glycemic control.
Objective: This study aimed to analyze clinical characteristics of patients with diabetic striatopathy to raise awareness amongst physicians, especially endocrinologists, about this rare neurological manifestation in patients with diabetes.
Methods: We retrospectively analyzed the data on clinical presentations, laboratory workups, and cranial CT and MRI of six patients with DS who were admitted to our hospital from October 2013 to June 2022.
Quant Imaging Med Surg
December 2024
Department of Otolaryngology, Peking University Third Hospital, Beijing, China.
Quant Imaging Med Surg
December 2024
Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: The lenticulostriate artery-neural complex (LNC), which includes the lenticulostriate artery (LSA) and surrounding neural structure, is a new concept proposed by neurologists and plays a pivotal role in hypertension-induced stroke. Conventional low-magnitude magnetic resonance imaging (MRI) has not been successfully used to reveal the microstructural changes of the LNC. This study aimed to evaluate the microstructural changes of the LNC in patients with prestroke hypertension using 7-Tesla (7-T) MRI and to identify the potential MRI biomarkers for monitoring hypertension-related neurological disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!