Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.

J Hazard Mater

School of Resources and Environmental Science, Department of Environmental Science, Wuhan University, Wuhan 430079, PR China.

Published: July 2009

The catalytic efficiency of iron (II, III) oxide to promote Fenton-like reaction was examined by employing Rhodamine B (RhB) as a model compound at neutral pH. Two types of iron (II, III) oxides were used as heterogeneous catalysts and characterized by XRD, Mössbauer spectroscopy, BET surface area, particle size and chemical analyses. The adsorption to the catalyst changed significantly with the pH value and the sorption isotherm was fitted using the Langmuir model for both solids. Both sorption and FTIR results indicated that surface complexation reaction may take place in the system. The variation of oxidation efficiency against H(2)O(2) dosage and amount of exposed surface area per unit volume was evaluated and correlated with the adsorption behavior in the absence of oxidant. The occurrence of optimum amount of H(2)O(2) or of exposed surface area for the effective degradation of RhB could be explained by the scavenging effect of hydroxyl radical by H(2)O(2) or by iron oxide surface. Sorption and decolourization rate of RhB as well as H(2)O(2) decomposition rate were found to be dependent on the surface characteristics of iron oxide. The kinetic oxidation experiments showed that structural Fe(II) content strongly affects the reactivity towards H(2)O(2) decomposition and therefore RhB decolourization. The site density and sorption ability of RhB on surface may also influence the oxidation performance in iron oxide/H(2)O(2) system. The iron (II, III) oxide catalysts exhibited low iron leaching, good structural stability and no loss of performance in second reaction cycle. The sorption on the surface of iron oxide with catalytic oxidation using hydrogen peroxide would be an effective oxidation process for the contaminants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2008.11.089DOI Listing

Publication Analysis

Top Keywords

iron iii
16
iii oxide
12
surface area
12
iron oxide
12
iron
9
types iron
8
oxide catalytic
8
surface
8
exposed surface
8
h2o2 decomposition
8

Similar Publications

New insights into the Fe(III)-activated peroxyacetic acid: oxidation properties and mechanism.

Environ Res

January 2025

Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:

Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented.

View Article and Find Full Text PDF

The complex pollution and nutrient-poor characteristics of surface waters result in the limited ability of conventional reactors to remove pollutants. In this study, a novel modified ceramsite material, modified with trivalent iron (Fe(III)) and fulvic acid (FA) to form ceramsite@Fe(III)@FA (HC), was used for the first time as a biocarrier to immobilize strain Cupriavidus sp. W12, constructing a biofilter to enhance nitrate (NO-N) removal in micro-polluted water.

View Article and Find Full Text PDF

Novel enhancement strategy for Hg adsorption in wastewater: Nonthermal plasma-mediated advanced modification of zero-valent iron-carbon galvanic cells with thiol functionalization.

J Environ Manage

January 2025

Interdisciplinary Research Center for Construction and Building Materials, Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia. Electronic address:

Mercury (Hg) pollution poses a critical threat to human health and the environment, necessitating urgent control measures. This study introduces a novel modification method for the common zero-valent iron-carbon (ZVI-AC) galvanic cells using a two-step process, nonthermal (NTP) irradiation followed by targeted functionalization, aiming to enhance Hg adsorption potential by adjusting the physicochemical properties of the cells. The NTP irradiated functionalized adsorbent demonstrated superior Hg adsorption performance across various concentrations and pH variations.

View Article and Find Full Text PDF

Designing advanced materials that effectively mitigate the poor cycle life of battery-type electrodes with high specific capacities is crucial for next-generation energy storage systems. Herein, graphene oxide-ceria (GO-CeO) nanocomposite synthesized via a facile wet chemical route is explored as cathode for high-performance supercapacitors. The morphological analysis suggests fine ceria (CeO) nanoparticles dispersed over ultrathin graphene oxide (GO) sheets while structural studies reveal face-centered cubic phase of CeO in the nanocomposite.

View Article and Find Full Text PDF

Building upon an earlier study of heme-nitrosyl complexes (. , , 20496-20505), we examined a wide range of nonheme {FeNO} complexes (the superscript represents the Enemark-Feltham count) and two dinitrosyl iron complexes using DMRG-CASSCF calculations. Analysis of the wave functions in terms of resonance forms with different [π*(NO)] occupancies (where = 0-4 for mononitrosyl complexes) identified the dominant electronic configurations of {FeNO} and {FeNO} complexes as Fe-NO and Fe-NO, respectively, mirroring our previous findings on heme-nitrosyl complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!