Protease Nexin-1, a 43-kDa glycoprotein, is a major physiological thrombin inhibitor involved in the modulation of nerve cell plasticity. Recombinant rat Protease Nexin-1 (rPN-1) was efficiently produced in Escherichia coli using a T7 RNA polymerase based expression system and purified by heparin-sepharose affinity chromatography yielding 3 mg of protein per liter of cell culture. The purity and chemical identity of rPN-1 were assessed by SDS-PAGE, Reverse Phase- High Performance Liquid Chromatography, mass spectrometry and two-dimensional-gel electrophoresis. Conformational analysis by circular dichroism and fluorescence spectroscopy revealed the presence of mixed alpha/beta secondary structure and the prevailing localization of Trp-residues in rather polar environments. Fluorescence titration of rPN-1 with heparin indicated that rPN-1 binds heparin with high affinity. Furthermore, the formation of a SDS-stable 1:1 thrombin-rPN-1 complex, monitored by SDS-PAGE, confirmed the native-like structure of rPN-1. Finally, the cellular effects of rPN-1, such as its ability to promote neurite outgrowth in neuroblastoma cells, were found to be very similar to those elicited by natural PN-1. Altogether, our results demonstrate that glycosylation does not alter neither structure nor function of PN-1 and that E. coli is a suitable expression system for obtaining milligram quantities of pure and fully active rPN-1 for structural and functional studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2008.12.006 | DOI Listing |
Mol Ther Nucleic Acids
December 2024
State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
Inner ear hair cell (HC) damage is irreversible in mammals, but it has been shown that supporting cells (SCs) have the potential to differentiate into HCs. , a serine protease inhibitor, encodes protease nexin 1, and this has been suggested to be a factor that promotes HC regeneration. In this study, we overexpressed in inner ear SCs cultured in two- and three-dimensional systems using the adeno-associated virus-inner ear (AAV-ie) vector, which promoted organoid expansion and HC differentiation.
View Article and Find Full Text PDFCurr Mol Med
October 2024
Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
Thromb Res
November 2024
Université Paris Cité and Université Sorbonne Paris Nord, Inserm U1148-LVTS, Paris, France. Electronic address:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in coagulation activation although it is usually not associated with consumption coagulopathy. D-dimers are also commonly elevated despite systemic hypofibrinolysis. To understand these unusual features of coronavirus disease 2019 (COVID-19) coagulopathy, 64 adult patients with SARS-CoV-2 infection (36 moderate and 28 severe) and 16 controls were studied.
View Article and Find Full Text PDFFront Cardiovasc Med
April 2023
Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!