The activator protein 1 (AP-1) transcription factor is assembled from jun-jun, jun-fos, or jun-atf family protein homo- or heterodimers. AP-1 belongs to the class of basic leucine zipper (bZIP) transcription factors. It binds to promoters of its target genes in a sequence-specific manner, and transactivates or represses them. AP-1 proteins are implicated in the regulation of a variety of cellular processes including proliferation and survival, differentiation, growth, apoptosis, cell migration, and transformation. The decision if a given AP-1 factor is positively or negatively regulating a specific target gene is made upon abundance of dimerization partners, dimer-composition, post-translational regulation, and interaction with accessory proteins. In this review we describe translational control mechanisms that can regulate the abundance of AP-1 proteins. The Atf4/5, and JunD (mRNAs) are regulated by upORF dependent mechanisms. JUNB (mRNA) translation is controlled via mTOR. Translation efficiency of the unstable c-Fos (mRNA) can be decreased by the miRNA mir7B, while its perinuclear translation might facilitate efficient nuclear c-fos protein import. c-Jun (mRNA) appears to be regulated by both, m7G cap (CAP)-dependent and CAP-independent translational control mechanisms, via putative internal ribosome entry segments (IRES). IRES elements were also proposed to play a role in the regulation of JunD (mRNA). We conclude that in addition to transcriptional and post-translational control mechanisms translational regulation contributes to the balanced production of AP-1 proteins, in order to maintain physiological cellular conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrrev.2009.01.001DOI Listing

Publication Analysis

Top Keywords

ap-1 proteins
16
control mechanisms
12
translational regulation
8
translational control
8
ap-1
7
mechanisms
5
proteins
5
translational
4
regulation mechanisms
4
mechanisms ap-1
4

Similar Publications

Lysosome-related proteins may have changes in the urinary exosomes of patients with acute gout attack.

Eur J Med Res

January 2025

Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.

Background: The autophagy-lysosome is intricately linked to the development of gout. At present, the diagnosis and monitoring of gout are mainly invasive tests, which cannot predict the occurrence of gout in the acute phase, and bring new pain to patients. This study focuses on the changes of lysosome-related proteins in urinary exosomes of patients with acute gout attack to explore the potential noninvasive biomarkers clinical application value.

View Article and Find Full Text PDF

WDR26 depletion alters chromatin accessibility and gene expression profiles in mammalian cells.

Genomics

January 2025

Robarts Research Institute, University of Western Ontario, London, Canada; Department of Biochemistry, University of Western Ontario, London, Canada; Department of Oncology, University of Western Ontario, London, Canada. Electronic address:

WD-repeat containing protein 26 (WDR26) is an essential component of the CTLH E3 ligase complex. Mutations in WDR26 lead to Skraban-Deardorff, an intellectual disability syndrome with clinical features resembling other disorders arising from defects in transcriptional regulation and chromatin structure. However, the role of WDR26 and its associated CTLH complex in regulating chromatin or transcription has not been elucidated.

View Article and Find Full Text PDF

Background: The transcription factor AP1 plays a crucial role in the proliferation, apoptosis, and terminal differentiation of epidermal keratinocytes.

Objective: This study aimed to clarify whether the subunit of AP1, FOSL1 protein, can be used to assess the exacerbation of psoriasis by evaluating its changes in protein and mRNA levels in cultured epidermal keratinocytes and skin specimens of the patients prescribed with bathwater PUVA (Psoralen and UVA) therapy. This study aimed to investigate FOSL1, a subunit of the transcription factor AP-1, as a potential biomarker for psoriasis by examining its protein and mRNA expression in skin specimens from patients undergoing bathwater PUVA (Psoralen and UVA) therapy and cultured epidermal keratinocytes.

View Article and Find Full Text PDF

Sirtuin 2 exacerbates renal tubule injury and inflammation in diabetic mice via deacetylation of c-Jun/c-Fos.

Cell Mol Life Sci

January 2025

Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.

Diabetic nephropathy (DN) is a serious complication of diabetes, and inflammation plays a crucial role. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, which is involved in the regulation of cell metabolism, proliferation and longevity through deacetylation. Our previous research showed a positive correlation between urinary SIRT2 levels and renal injury markers in DN patients.

View Article and Find Full Text PDF

Advances in the relationship between AP-1 and tumorigenesis, development and therapy resistance.

Discov Oncol

January 2025

NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, Jilin, China.

Activating protein 1 (AP-1) is a transcription factor composed of several protein families, Jun proteins and Fos proteins are the components of AP-1. AP-1 is involved in various cellular processes, such as proliferation, differentiation, apoptosis and inflammation. For tumor cells, AP-1 is considered to be a driver whose activity is associated with dysfunction and the onset, development, invasion, and migration of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!