IGF-1 promotes beta-amyloid production by a secretase-independent mechanism.

Biochem Biophys Res Commun

Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.

Published: February 2009

Beta-amyloid peptide (Abeta) is generated via the sequential proteolysis of beta-amyloid precursor protein (APP) by beta- and gamma-secretases, and plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Here, we sought to clarify the role of insulin-like growth factor-1 (IGF-1), implicated in the AD pathomechanism, in the generation of Abeta. Treatment of neuroblastoma SH-SY5Y cells expressing AD-associated Swedish mutant APP with IGF-1 did not alter cellular levels of APP, but significantly increased those of beta-C-terminal fragment (beta-CTF) and secreted Abeta. IGF-1 also enhanced APP phosphorylation at Thr668. Treatment of beta-CTF-expressing cells with IGF-1 increased the levels of beta-CTF and secreted Abeta. The IGF-1-induced augmentation of beta-CTF was observed in the presence of gamma-secretase inhibitors, but not in cells expressing beta-CTF with a Thr668 to alanine substitution. These results suggest that IGF-1 promotes Abeta production through a secretase-independent mechanism involving APP phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.01.044DOI Listing

Publication Analysis

Top Keywords

igf-1 promotes
8
production secretase-independent
8
secretase-independent mechanism
8
cells expressing
8
beta-ctf secreted
8
secreted abeta
8
app phosphorylation
8
igf-1
6
abeta
5
app
5

Similar Publications

Network Pharmacology Combined With Metabolomics Reveals the Mechanism of Yangxuerongjin Pill Against Type 2 Diabetic Peripheral Neuropathy in Rats.

Drug Des Devel Ther

January 2025

Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People's Republic of China.

Purpose: This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN.

Methods: In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks.

View Article and Find Full Text PDF

Systemic factors associated with antler growth promote complete wound healing.

NPJ Regen Med

January 2025

Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China.

Deer antlers are the only mammalian appendages that can fully regenerate from periosteum of pedicles (PP). This regeneration process starts from regenerative healing of wounds. Removal of PP abolishes antler regeneration, however, the regenerative cutaneous wound healing proceeds, indicating that some factors in the circulation contribute to this healing.

View Article and Find Full Text PDF

Accelerated rehabilitation following facial nerve injury presents unique clinical challenges. This study evaluates the therapeutic effects of concentrated growth factor (CGF) on facial nerve recovery in a rabbit model and on RSC96 Schwann cells. Characterization of the CGF membrane (CGFM) revealed a three-dimensional fibrin network with embedded platelets, and representative growth factors, including TGF-β1, PDGF-BB, IGF-1, bFGF, and VEGF, were detected.

View Article and Find Full Text PDF

Background: Loeys-Dietz syndrome (LDS) is a clinically and genetically heterogeneous, autosomal dominant aortic aneurysm syndrome with widespread systemic involvement. We present the case of a 16.5-year-old girl with LDS type 2 (LDS2) caused by a heterozygous pathogenic variant, c.

View Article and Find Full Text PDF

Benzophenone-3 (also referred to as oxybenzone) is a putative endocrine disrupting chemical and common ingredient in sunscreens and other personal care products. We previously showed that benzophenone-3 can have both promotional and protective effects on mammary tumorigenesis dependent upon dietary fat. The current study examined diet-dependent effects of benzophenone-3 in mammary ductal development in BALB/c mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!