Background: Acute striatal necrosis is a devastating consequence of encephalopathic crisis in patients with glutaric aciduria type I (GA-I), but the mechanisms underlying brain injury are not completely understood.

Objective: To approach pathophysiological aspects of brain injury in GA-I by means of functional techniques in magnetic resonance imaging (MRI).

Patients And Methods: Four patients during an acute encephalopathic crisis and three asymptomatic siblings with GA-I underwent single-voxel hydrogen magnetic resonance spectroscopy (MRS) and brain MRI including gradient echo T1-weighted, FLAIR, T2-weighted and diffusion-weighted imaging.

Results: The study was performed between three and eight days after the onset of acute encephalopathic crisis. Isotropic diffusion images showed high signal changes with corresponding low apparent diffusion coefficient values within the putamen, caudate nuclei and globus pallidus (four patients), and the cerebral peduncles including the substantia nigra (one patient). The study disclosed normal findings in asymptomatic siblings. MRS showed decreased N-acetyl-aspartate/creatine ratio at the basal ganglia in encephalopathic patients when compared to a group of sex- and age-matched controls.

Conclusions: Brain injury in GA-I is characterized by the presence of cytotoxic edema and reduced neuronal integrity by functional imaging techniques. Involvement of the basal ganglia may be asymmetrical in patients with unilateral motor disorder and may extent to the cerebral peduncles and substantia nigra, which may be responsible for the acute onset dystonia in some patients. Functional techniques failed to demonstrate any abnormalities in asymptomatic patients, which is in agreement with the integrity of basal ganglia structures observed by conventional MRI sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpn.2008.12.002DOI Listing

Publication Analysis

Top Keywords

brain injury
16
functional techniques
12
magnetic resonance
12
encephalopathic crisis
12
basal ganglia
12
glutaric aciduria
8
aciduria type
8
techniques magnetic
8
resonance imaging
8
injury ga-i
8

Similar Publications

Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

The long-term clinical outcomes and associated prognostic factors in contactin-associated protein-like 2 (CASPR2)-antibody diseases are unknown. A total of 75 participants with CASPR2 antibodies were longitudinally assessed for disability, quality-of-life, and chronic pain. Although most symptoms improved within 6 months of treatment, neuropathic pain and fatigue were the most immunotherapy refractory, and persisted for up to 6 years.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!