Adrenomedullin is a secreted peptide hormone with multiple functions. Although a number of reports have indicated that adrenomedullin may be involved in tumor progression, its mechanism of action remains obscure. In this study, we have analysed the signal transduction pathway activated by adrenomedullin in human glioma cells. Our results revealed that adrenomedullin induced the phosphorylation of both c-Jun and JNK in glioblastoma cells. Silencing JNK expression with siRNA reversed the phosphorylation of c-Jun induced by adrenomedullin, indicating that JNK is responsible of c-Jun activation. In addition, electrophoretic mobility-shift assays showed that the increase in phosphorylation of c-Jun was associated with increased AP-1 DNA binding activity. Supershift assays and co-immunoprecipitation demonstrated that c-Jun and JunD are part of the AP-1 complex, indicating that activated c-Jun is dimerized with JunD in response to adrenomedullin. Furthermore, adrenomedullin was shown to promote cell transit beyond cell cycle phases with a concomittant increase in cyclin D1 protein level, suggesting that adrenomedullin effects cell proliferation through up-regulation of cyclin D1. The inhibition of JNK activation or the suppression of c-Jun or JunD expression with siRNA impaired the effects of adrenomedullin on cell proliferation and on cyclin D1. Taken together, these data demonstrate that activation of cJun/JNK pathway is involved in the growth regulatory activity of adrenomedullin in glioblastoma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2009.01.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!