Carbohydrate structures influence many aspects of cell biology. Manipulating the glycosyltransferase enzymes, that sequentially add carbohydrate moieties to proteins and lipids as they pass through the Golgi and secretory pathway, can alter these carbohydrate epitopes. We previously demonstrated that the eight amino acid cytoplasmic tail of alpha1,2fucosyltransferase (FT) contained a sequence for Golgi localisation. In this study, we examined the localisation of the closely related secretor type alpha1,2fucosyltransferase (Sec) which has a smaller, yet apparently unrelated, five amino acid cytoplasmic tail. In contrast to the Golgi localisation of FT, Sec displayed atypical cytoplasmic vesicular-like staining. However, replacing just the five amino acid tail of Sec with FT was sufficient to relocalise the enzyme to a perinuclear region with Golgi-like staining. The biological significance of this relocalisation was this chimaeric enzyme was more effective than FT at competing for N-Acetyl-lactosamine and thus was superior in reducing expression of the Galalpha(1,3)Gal xenoepitope.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmr.939 | DOI Listing |
Sci Rep
January 2025
Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
Selenium promotes plant growth and improves nutritional quality, and the role of nano-selenium in alfalfa in regulating nutritional quality is unknown. In this study, using the N labeling method, it was found that nano-selenium could promote plant nitrogen metabolism and photosynthesis by increasing the light energy capture capacity and the activities of key enzymes of the nitrogen metabolism process, leading to an increase in alfalfa nitrogen accumulation and dry matter content. The transcriptome and metabolome revealed that nano-selenium mainly affected the pathways of 'biosynthesis of amino acids', 'starch and sucrose metabolism', 'pentose and glucuronate interconversions', 'pentose phosphate pathway', and 'flavonoid biosynthesis'.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.
View Article and Find Full Text PDFVirol J
January 2025
Department of Microbiology, College of Medicine, Taif University, Taif, 21944, Saudi Arabia.
Background: Despite numerous genetic studies on Infectious Bronchitis Virus (IBV), many strains from the Middle East remain misclassified or unclassified. Genotype 1 (GI-1) is found globally, while genotype 23 (GI-23) has emerged as the predominant genotype in the Middle East region, evolving continuously through inter- and intra-genotypic recombination. The GI-23 genotype is now enzootic in Europe and Asia.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:
The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!