A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interplay of Mre11 nuclease with Dna2 plus Sgs1 in Rad51-dependent recombinational repair. | LitMetric

Interplay of Mre11 nuclease with Dna2 plus Sgs1 in Rad51-dependent recombinational repair.

PLoS One

Divisions of Biology and Chemistry, Caltech, Braun Laboratories, Pasadena, California, United States of America.

Published: April 2009

The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5' to 3' exonuclease degradation creating a single-stranded 3' overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3' to 5', rather than 5' to 3' activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5' to 3' degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Delta with a pif1Delta. The dna2Delta pif1Delta mutant is IR-resistant. We have determined that dna2Delta pif1Delta mre11-D56N and dna2Delta pif1Delta mre11-H125N strains are equally as sensitive to IR as mre11Delta strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Delta pif1Delta mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5' to 3' degradation at DSB ends. We further show that sgs1Delta mre11-H125N, but not sgs1Delta, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2625443PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004267PLOS

Publication Analysis

Top Keywords

dna2delta pif1delta
20
mre11 nuclease
12
nuclease
9
nuclease dna2
8
nuclease activity
8
pif1delta mre11-d56n
8
dna2
5
repair
5
mre11
5
dna2delta
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!