Quantifying environmental adaptation of metabolic pathways in metagenomics.

Proc Natl Acad Sci U S A

Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry, Computer Science, and Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.

Published: February 2009

Recently, approaches have been developed to sample the genetic content of heterogeneous environments (metagenomics). However, by what means these sequences link distinct environmental conditions with specific biological processes is not well understood. Thus, a major challenge is how the usage of particular pathways and subnetworks reflects the adaptation of microbial communities across environments and habitats-i.e., how network dynamics relates to environmental features. Previous research has treated environments as discrete, somewhat simplified classes (e.g., terrestrial vs. marine), and searched for obvious metabolic differences among them (i.e., treating the analysis as a typical classification problem). However, environmental differences result from combinations of many factors, which often vary only slightly. Therefore, we introduce an approach that employs correlation and regression to relate multiple, continuously varying factors defining an environment to the extent of particular microbial pathways present in a geographic site. Moreover, rather than looking only at individual correlations (one-to-one), we adapted canonical correlation analysis and related techniques to define an ensemble of weighted pathways that maximally covaries with a combination of environmental variables (many-to-many), which we term a metabolic footprint. Applied to available aquatic datasets, we identified footprints predictive of their environment that can potentially be used as biosensors. For example, we show a strong multivariate correlation between the energy-conversion strategies of a community and multiple environmental gradients (e.g., temperature). Moreover, we identified covariation in amino acid transport and cofactor synthesis, suggesting that limiting amounts of cofactor can (partially) explain increased import of amino acids in nutrient-limited conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2629784PMC
http://dx.doi.org/10.1073/pnas.0808022106DOI Listing

Publication Analysis

Top Keywords

environmental
5
quantifying environmental
4
environmental adaptation
4
adaptation metabolic
4
pathways
4
metabolic pathways
4
pathways metagenomics
4
metagenomics approaches
4
approaches developed
4
developed sample
4

Similar Publications

Comprehensive histopathological analysis of gastric cancer in European and Latin America populations reveals differences in PDL1, HER2, p53 and MUC6 expression.

Gastric Cancer

January 2025

Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.

Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.

Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.

View Article and Find Full Text PDF

Pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (IBU) and naproxen (NPX), are widely used for medical purposes but have also become prevalent environmental contaminants. However, there is limited understanding of their effects on aquatic organisms, especially regarding multigenerational and mixture exposures. This study aimed to evaluate the toxicological impacts of ibuprofen and naproxen, individually and in combination, on three generations of Daphnia carinata, a freshwater organism.

View Article and Find Full Text PDF

Pathways to One Health: Enhancing Inter-Sectoral Collaboration in Pakistan.

Ecohealth

January 2025

Health Services Academy, Chak Shahzad, Park Road, Islamabad, 44000, Pakistan.

One Health is an integrative approach aiming to achieve optimal health outcomes by recognizing the interconnection between humans, animals, and the environment. This study explores the understanding, perspectives, hurdles, and implications of intersectoral collaboration within Pakistan's human health system, focusing on One Health principles. A qualitative phenomenological approach was employed, involving 17 key informant interviews with purposively selected stakeholders from public health, agriculture, veterinary medicine, agriculture and environmental science.

View Article and Find Full Text PDF

Eureka.

J Soc Work End Life Palliat Care

January 2025

Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.

View Article and Find Full Text PDF

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!