Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A local description of the shape of the left ventricle is relevant in assessing the process of adverse ventricular remodeling, associated with most cardiac pathologies, and in monitoring reverse remodeling by therapy. To quantify local shape of the left ventricle, one can calculate the curvature of its epicardial or endocardial surface. The 3D geometry of the heart and especially the ventricles, can typically be described using finite element meshes. From a mathematical point of view these meshes provide a local parametrization of the surface in the 3-dimensional space. We discuss the analytic derivation of the principle curvatures of the left-ventricular surfaces given their smooth finite-element meshes and apply this derivation to assess the regional shape of the normal porcine left ventricle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2008.4649314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!