The Cell-CT is an optical projection tomography microscope (OPTM) developed for high resolution 3D imaging of single cells based on absorption stains and brightfield microscopy. In this study we demonstrate the use of the Cell-CT in multi-color mode for simultaneous imaging of cellular 3D morphology and the 3D distribution of nanoparticle clusters in the cytoplasm. The ability to image cellular processes in relation to cellular compartments with a non-fluorescence 3D technology opens new perspectives for molecular research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2008.4649169 | DOI Listing |
Nat Commun
January 2025
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).
View Article and Find Full Text PDFJ Neurosci
January 2025
The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA
Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents.
View Article and Find Full Text PDFNeuron
January 2025
State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China. Electronic address:
Gamma-band oscillations (GBOs) in the primary somatosensory cortex (S1) play key roles in nociceptive processing. Yet, one crucial question remains unaddressed: what neuronal mechanisms underlie nociceptive-evoked GBOs? Here, we addressed this question using a range of somatosensory stimuli (nociceptive and non-nociceptive), neural recording techniques (electroencephalography in humans and silicon probes and calcium imaging in rodents), and optogenetics (alone or simultaneously with electrophysiology in mice). We found that (1) GBOs encoded pain intensity independent of stimulus intensity in humans, (2) GBOs in S1 encoded pain intensity and were triggered by spiking of S1 interneurons, (3) parvalbumin (PV)-positive interneurons preferentially tracked pain intensity, and critically, (4) PV S1 interneurons causally modulated GBOs and pain-related behaviors for both thermal and mechanical pain.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Obstetrics & Gynecology, Chungnam National University School of Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea.
The use of neoadjuvant chemotherapy (NAC) as a first-line therapy for advanced high-grade serous ovarian carcinoma (HGSOC) has increased. However, several studies have reported NAC-induced platinum resistance. This study aimed to evaluate the predictive impact of clinical factors on chemotherapy response score (CRS) and to select patients who would respond well to NAC.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address:
Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!