Tinnitus is the perception of phantom sounds in the ears or in the head. Sound therapy techniques for tinnitus treatment have been proposed. In order to investigate mechanisms of tinnitus generation and the clinical effects of sound therapy from the viewpoint of neural engineering, we have proposed a computational model using a neural oscillator. In the present paper, we propose another model that is composed of model neurons described by simplified Hodgkin-Huxley equations. By computer simulation it was detected that this model also has a bistable state, i.e., a stable oscillatory state and a stable equilibrium (non-oscillatory) state coexist at a certain parameter region. It was also noticed that the oscillation can be inhibited by supplying constant or pulse train stimuli, which is hypothesized as an afferent signal that is employed as an acoustical signal for tinnitus treatment. By hypothesizing that the oscillation and the equilibrium correspond to generation and inhibition of tinnitus, respectively, these phenomena could explain the fact that the habituated human auditory system temporarily halts perception of tinnitus following sound therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2008.4649152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!