Perilla frutescens is a food plant widely used in Asian cuisine. This plant was investigated for its interesting taste and somatosensory properties. Perillaldehyde and perillaketone are among the components of the aromatic extracts from P. Frutescens. These compounds were shown here to activate the cloned TRPA1 channel when expressed in an heterologous cell system and are therefore suggested to be responsible for the chemesthetic properties of this plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2008.12.057 | DOI Listing |
Food Sci Nutr
January 2025
Department of Southern Area Crop Science National Institute of Crop Science, Rural Development Administration Milyang Korea.
Fine particulate matter (PM2.5) is known to exacerbate chronic respiratory disorders, primarily by inducing inflammatory responses and mucus overproduction. Perilla leaves are reported to have significant health benefits, such as antioxidant, antibacterial, and antiallergic properties, attributed to phenolic compounds that vary depending on genetic diversity.
View Article and Find Full Text PDFFoods
December 2024
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of , , and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Background: Perilla frutescens (L.) Britt. (Lamiaceae) leaves are essential culinary and medicinal herbs, native to East Asian countries.
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. : The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!