The interindividual variation in the activity of xenobiotic metabolizing enzymes and DNA repair genes could modify an individual's risk of recurrent malignancy and response to therapy. We investigated whether ALL outcome was related to polymorphisms in genes CYP2D6, MPO, EPHX1, NQO1, TS, XPD and XRCC1 in 95 consecutive ALL children by PCR or PCR-FRLP techniques. Polymorphisms in genes NQO1 and TS were associated with a significantly slow response to induction chemotherapy and NQO1 was also associated with a lower five-year event-free survival. This study suggests that polymorphisms of NQO1 and TS could be important for patient response to induction therapy and for treatment outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2008.12.006 | DOI Listing |
Sci Rep
January 2025
U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France.
Deciphering the sources of variability in drug responses requires to understand the processes modulating drug pharmacokinetics. However, pharmacological research suffers from poor reproducibility across clinical, animal, and experimental models. Predictivity can be improved by using Organs-on-Chips, which are more physiological, human-oriented, micro-engineered devices that include microfluidics.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Syngenta, Jealott's Hill International Research Centre, Bracknell, UK.
Background: Herbicide cross-resistance is of increasing concern because it compromises the effectiveness of both existing and new chemical options. However, a common misconception is that if a weed population shows dose-response shifts to two herbicides, it is cross-resistant to both. The possibility that individual plants may possess different resistance mechanisms is often overlooked.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DA, U.K.
Helminth parasites have long adapted to survive hostile host environments and can likely adapt against the chemical anthelmintic challenge. One proposed adaptation route is via Phase I and II xenobiotic metabolizing enzymes (XMEs). For successful Helminth pharmacotherapy discovery programs, a working understanding of Helminth-derived chemical detoxification, the Helminth detoxome, is a must.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
AS3MT, GSTO2, and GSTP1 genes play important roles in the arsenic biotransformation pathway, while CYP2E1 gene has a prominent role in the metabolic activation of xenobiotics. Hence, polymorphisms of these genes might have an effect on arsenic biotransformation and could impact susceptibility to arsenical skin lesions in individuals of chronic arsenic toxicity. The present case-control study, comprising 148 subjects, attempted to evaluate genetic association between nine polymorphisms of AS3MT, GSTO2, GSTP1 and CYP2E1 genes and arsenical skin lesions in a West Bengal (WB) population.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
January 2025
Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic. Electronic address:
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!