AI Article Synopsis

Article Abstract

In the present study we developed an enzymatic approach (through the use of collagenase and dispase) to isolate bovine intestinal epithelial cells. Using this method, freshly isolated jejunocytes could be distinguished from simultaneously isolated colonocytes, as the jejunocytes specifically exhibited the small intestinal peptidase gene transcript, as well as an active alkaline phosphatase. The transformation of both types of cell suspension was performed by retroviral infection, using reproduction-defective viruses bearing the gene coding for the large T antigen of the leukaemia simian virus (SV40). The success of the transfection was demonstrated by (1) a significant increase in cell passage numbers (52-53 vs. 7 passages for non-transfected cells), (2) the detection of both the large T transcript and the large T antigen in transformed cells. Possible contamination and progressive substitution of bovine primocultures by non-bovine lineages available in the laboratory was excluded, as the transformed cells presented a bovine typical karyotype. Most transfected cells kept an epithelial morphology after transformation. They also maintained the expression of FABP and enterocyte specific enzymes (brush-border associated maltase and IAP). However, levels of specific activity of these enzymes were low, suggesting that cell differentiation is not completely achieved under the applied culture conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2008.12.002DOI Listing

Publication Analysis

Top Keywords

large antigen
8
transformed cells
8
cells
5
preliminary characterization
4
characterization jejunocyte
4
jejunocyte colonocyte
4
cell
4
colonocyte cell
4
cell lines
4
lines isolated
4

Similar Publications

Antibody and cell-based therapeutics targeting cell surface receptors have emerged as a major class of immune therapeutics for treating cancer. However, the number of cell surface targets for cancer immunotherapy remains limited. Glypican-3 (GPC3) is a cell surface proteoglycan and an oncofetal antigen.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy has shown very promising results in the treatment of refractory or relapsed diffuse large B-cell lymphoma (DLBCL). This systematic review evaluates the effectiveness and side effects of CAR T-cell therapies, focusing on factors affecting both clinical outcomes and adverse effects. This review included data from 14 studies involving 1392 patients with DLBCL who underwent CAR T-cell therapy.

View Article and Find Full Text PDF

Data on the impact of ethnic and socioeconomic factors on Chimeric antigen receptor (CAR) T-cell therapy (access and outcomes are limited, but key to understand whether results from the registration trials are generalizable to real-world patient populations. Here, we analysed ethnicity, socioeconomic deprivation and referral patterns in a cohort of 314 large B-cell lymphoma patients approved for third-line CD19 CAR-T across three large UK CAR-T centres. Patients from deprived areas had a lower infusion rate compared to low deprivation areas (73% vs.

View Article and Find Full Text PDF

Objectives: Given the ongoing challenges regarding the specific roles of viral infections in cancer etiology, or as cancer co-morbidities, this study assessed potential associations between anti-viral, T-cell receptor (TCR) complementarity domain region-3 (CDR3s), and clinical outcomes for ovarian cancer.

Methods: TCR CDR3s were isolated from ovarian cancer specimens for a determination of which patients had anti-viral CDR3s and whether those patients had better or worse outcomes.

Results: Analyses revealed that patients with exact matches of anti-Epstein-Barr virus (EBV) CDR3 amino acid sequences exhibited better outcomes for both overall and disease-specific survival.

View Article and Find Full Text PDF

Current advancements in cellular immunotherapy for autoimmune disease.

Semin Immunopathol

January 2025

Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The management of autoimmune diseases is currently limited by therapies that largely suppress the immune system, often resulting in partial and temporary remissions. Cellular immunotherapies offer a targeted approach by redirecting immune cells to correct the underlying autoimmunity. This review explores the latest advances in cellular immunotherapies for autoimmune diseases, focusing on various strategies, such as the use of chimeric antigen receptor (CAR) T cells, chimeric auto-antibody receptor (CAAR) T cells, regulatory T cells (Tregs), and tolerogenic dendritic cells (TolDCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!