Polyadenylation-mediated RNA degradation in plant mitochondria.

Methods Enzymol

Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur, Strasbourg, France.

Published: March 2009

In plant mitochondria, polyadenylation-mediated RNA degradation is involved in several key aspects of genome expression, including RNA maturation, RNA turnover, and RNA surveillance. We describe here a combination of in vivo, in vitro, and in organello methods that have been developed or optimized to characterize this RNA degradation pathway. These approaches include several PCR-based methods designed to identify polyadenylated RNA substrates, as well as in vitro and in organello systems, to study functional aspects of the RNA degradation processes. Taken together, identification of RNA substrates combined with information from degradation assays are invaluable tools to dissect the mechanisms and roles of RNA degradation in plant mitochondrial genome expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0076-6879(08)02221-0DOI Listing

Publication Analysis

Top Keywords

rna degradation
20
rna
9
polyadenylation-mediated rna
8
degradation plant
8
plant mitochondria
8
genome expression
8
vitro organello
8
rna substrates
8
degradation
6
mitochondria plant
4

Similar Publications

SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition.

Sci Adv

January 2025

Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.

View Article and Find Full Text PDF

Background: Multiplex genetic testing is recommended when treating nonsmall cell lung cancer. A certain percentage of test failures in RNA assays owing to poor surgical specimen quality have been documented, and fixation failure is a possible cause. At our institution, sheet-like fixation is performed to reduce fixation time.

View Article and Find Full Text PDF

Population-based sampling has improved pathogen monitoring in the US swine industry by increasing sensitivity while reducing costs. Postmortem tongue fluids (TF) have emerged as a practical option for monitoring porcine reproductive and respiratory syndrome virus (PRRSV) in breeding herds, but limited data exist on optimal storage conditions. This study evaluated PRRSV RNA detection via RT-qPCR in TF samples under various storage times, temperatures, and viral loads.

View Article and Find Full Text PDF

Regulating Immune Responses Induced by PEGylated Messenger RNA-Lipid Nanoparticle Vaccine.

Vaccines (Basel)

December 2024

Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.

Messenger RNA (mRNA)-based therapeutics have shown remarkable progress in the treatment and prevention of diseases. Lipid nanoparticles (LNPs) have shown great successes in delivering mRNAs. After an mRNA-LNP vaccine enters a cell via an endosome, mRNA is translated into an antigen, which can activate adaptive immunity.

View Article and Find Full Text PDF

Molecular Mechanism During Mycelium Subculture Degeneration of .

J Fungi (Basel)

December 2024

College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.

Periodic mycelial subculture is a method commonly used for the storage of edible mushrooms, but excessive subculturing can lead to the degeneration of strains. In this study, the strain V971(M0) was successively subcultured on PDA medium every 4 days, and one generation of strains was preserved every 4 months. Thus, five generations of subcultured strains (M1-M5) were obtained after 20 months of mycelial subculturing, their production traits were determined, and transcriptomic analysis was performed using RNA-seq; the differentially expressed genes were verified via RT-qPCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!