Hydrophobic films by atmospheric plasma curing of spun-on liquid precursors.

Langmuir

Chemical & Biomolecular Engineering Department, University of California, Box 951292, Los Angeles, California 90095-1592, USA.

Published: February 2009

Hydrophobic coatings have been produced on glass and acrylic samples by using a low-temperature atmospheric pressure plasma to polymerize liquid fluoroalkylsilane precursors. The fluoroalkylsilane precursor was dissolved in isooctane and spun onto the substrate at 550 rpm. The sample was then exposed to the reactive species generated from a nitrogen plasma. The plasma was operated with 2.3 vol % N2 in helium at 7.4 W/cm2 at a radio frequency of 27.12 MHz. The total and polar component of the coating's surface energy was found to equal 11.0 and 1.2 dyn/cm, respectively. Average water contact angles of 110 degrees and 106 degrees were measured on the coated glass and acrylic surfaces, respectively. X-ray photoelectron spectroscopy revealed that, after treatment, the fluoroalkyl ligands remained intact on the Si atoms, with a F/C atomic ratio of 2.23.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la803791jDOI Listing

Publication Analysis

Top Keywords

glass acrylic
8
hydrophobic films
4
films atmospheric
4
plasma
4
atmospheric plasma
4
plasma curing
4
curing spun-on
4
spun-on liquid
4
liquid precursors
4
precursors hydrophobic
4

Similar Publications

Background: The aim of this study was to evaluate visual outcomes and patient satisfaction after bilateral implantation of a new hydrophobic acrylic intraocular lens called Clareon (Alcon) using the mini-monovision technique.

Methods: A single-center, prospective, nonrandomized study was conducted in Tandil (Buenos Aires, Argentina), including patients scheduled for cataract surgery. To achieve mini-monovision, the spherical equivalent was calculated between -0.

View Article and Find Full Text PDF

Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes.

Macromolecules

January 2025

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.

Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature ( ).

View Article and Find Full Text PDF

Impact of surface conditioner phytic acid (IP6) Er,Cr:YSGG laser (ECYL) methylene blue photodynamic therapy (MB-PDT) on the microleakage and shear bond strength (SBS) of resin-modified glass ionomer cement (RMGIC) to primary sound dentin. Overall, 80 extracted sound primary molars were collected followed by their submergence in self-cure acrylic resin. The dentin surface was exposed and made flat and was assigned into four groups based on the surface conditioning.

View Article and Find Full Text PDF

Superhydrophobic surfaces have attracted tremendous attention due to their intriguing lotus-leaf-like water-repelling phenomenon and wide applications, however, most superhydrophobic coatings are prepared with environmentally unfriendly organic solvents and suffer from poor mechanical strength. To solve these issues, waterborne recoatable superhydrophobic (WRSH) coatings are developed based on a novel self-synthesized water-soluble fluorinated acrylic polymer and hydrophobic modified silica nanoparticles. The trade-off between waterborne and superhydrophobicity is well mediated by protonation and deprotonation of the fluorinated acrylic polymer.

View Article and Find Full Text PDF

Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!