Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, higher order tensors were proposed for a more advanced representation of non-Gaussian diffusion. These advanced diffusion models have new requirements for the gradient encoding schemes used in the diffusion weighted image acquisition. The influence of the gradient encoding schemes on the estimated standard second order diffusion tensor was previously investigated. Here, we focus on the suitability of different encoding scheme types for higher order tensor models. Two quality measures for the gradient encoding schemes, the condition number of the estimation matrix and a new measure that evaluates the signal deviation on simulated data, are used to determine which gradient encoding is suited best for higher order tensor estimations. Six different gradient encoding scheme types were investigated. A certain force-minimizing scheme type gave the best results in the evaluations presented here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.21797 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!