Constructing multicomponent protein structures that match the complexity of those found in nature is essential for the next generation of medical materials. In this report, a versatile method for precisely arranging multicomponent protein nanopatterns in two-dimensional single-layer or three-dimensional multilayer formats using electron beam lithography is described. Eight-arm poly(ethylene glycol)s (PEGs) were modified at the chain ends with either biotin, maleimide, aminooxy, or nitrilotriacetic acid. Analysis by 1H NMR spectroscopy revealed that the reactions were efficient and that end-group conversions were 91-100%. The polymers were then cross-linked onto Si surfaces using electron beams to form micron-sized patterns of the functional groups. Proteins with biotin binding sites, a free cysteine, an N-terminal alpha-oxoamide, and a histidine tag, respectively, were then incubated with the substrate in aqueous solutions without the addition of any other reagents. By fluorescence microscopy experiments it was determined that proteins reacted site-specifically with the exposed functional groups to form micropatterns. Multicomponent nanoscale protein patterns were then fabricated. Different PEGs with orthogonal reactivities were sequentially patterned on the same chip. Simultaneous assembly of two different proteins from a mixture of the biomolecules formed the multicomponent two-dimensional patterns. Atomic force microscopy demonstrated that nanometer-sized polymer patterns were formed, and fluorescence microscopy demonstrated that side-by-side patterns of the different proteins were obtained. Moreover, multilayer PEG fabrication produced micron- and nanometer-sized patterns of one functional group on top of the other. Precise three-dimensional arrangements of different proteins were then realized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050812 | PMC |
http://dx.doi.org/10.1021/ja804767j | DOI Listing |
Anal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA. Electronic address:
Purpose: Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs.
View Article and Find Full Text PDFRadiat Res
January 2025
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Biomedical Engineering, Iwate Medical University, Iwate 028-3694, Japan.
This study aimed to investigate the release of metallic ions from cobalt-chromium (Co-Cr) alloys fabricated by additive manufacturing (AM) for comparison with dental casting. Co-Cr alloys were fabricated via AM using selective laser melting (SLM) and electron beam melting (EBM) in powder-bed fusion. Polished and mechanically ground specimens were prepared.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!