Dr0930, a member of the amidohydrolase superfamily in Deinococcus radiodurans, was cloned, expressed, and purified to homogeneity. The enzyme crystallized in the space group P3121, and the structure was determined to a resolution of 2.1 A. The protein folds as a (beta/alpha)7beta-barrel, and a binuclear metal center is found at the C-terminal end of the beta-barrel. The purified protein contains a mixture of zinc and iron and is intensely purple at high concentrations. The purple color was determined to be due to a charge transfer complex between iron in the beta-metal position and Tyr-97. Mutation of Tyr-97 to phenylalanine or complexation of the metal center with manganese abolished the absorbance in the visible region of the spectrum. Computational docking was used to predict potential substrates for this previously unannotated protein. The enzyme was found to catalyze the hydrolysis of delta- and gamma-lactones with an alkyl substitution at the carbon adjacent to the ring oxygen. The best substrate was delta-nonanoic lactone with a kcat/Km of 1.6 x 10(6) M-1 s-1. Dr0930 was also found to catalyze the very slow hydrolysis of paraoxon with values of kcat and kcat/Km of 0.07 min-1 and 0.8 M-1 s-1, respectively. The amino acid sequence identity to the phosphotriesterase (PTE) from Pseudomonas diminuta is 30%. The eight substrate specificity loops were transplanted from PTE to Dr0930, but no phosphotriesterase activity could be detected in the chimeric PTE-Dr0930 hybrid. Mutation of Phe-26 and Cys-72 in Dr0930 to residues found in the active site of PTE enhanced the kinetic constants for the hydrolysis of paraoxon. The F26G/C72I mutant catalyzed the hydrolysis of paraoxon with a kcat of 1.14 min-1, an increase of 16-fold over the wild-type enzyme. These results support previous proposals that phosphotriesterase activity evolved from an ancestral parent enzyme possessing lactonase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176505 | PMC |
http://dx.doi.org/10.1021/bi802274f | DOI Listing |
Polymers (Basel)
October 2024
Department of Inorganic Chemistry, Charles University, Hlavova 8, 128 40 Prague, Czech Republic.
Chem Sci
October 2024
Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
Effective degradation of non-natural phosphate triesters (PTs) widely used in pesticides and warfare agents is of paramount relevance for human and environmental safety, particularly under acidic conditions where they are highly stable. Here, we present a detailed reactivity and mechanistic study pioneering discrete {ZrO} clusters, which are commonly employed as building blocks for Zr-MOFs and as non-classical soluble coordination compounds for the degradation of PTs using the pesticide ethyl paraoxon as a model. Combined computational studies, mechanistic experiments, and EXAFS analysis show that the reactivity of these clusters arises from their Zr-Zr bimetallic sites, which hydrolyze ethyl paraoxon under acidic conditions through an intramolecular pathway.
View Article and Find Full Text PDFSmall
December 2024
Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.
Biosens Bioelectron
January 2025
School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA. Electronic address:
ACS Appl Mater Interfaces
July 2024
Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel.
The catalytic efficiency of enzymes can be harnessed as an environmentally friendly solution for decontaminating various xenobiotics and toxins. However, for some xenobiotics, several enzymatic steps are needed to obtain nontoxic products. Another challenge is the low durability and stability of many native enzymes in their purified form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!