Ab initio investigation of dissolution mechanisms in aluminosilicate minerals.

J Phys Chem A

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.

Published: February 2009

The reactions of aluminosilicate clusters with water are investigated using ab initio calculations. There are several reaction sites on a mineral surface, and, in the case of aluminosilicates, the dissolution chemistry is dictated by chemically distinct surface termination sites: Al and Si. Environmental factors such as pH determine the protonation state and configuration around these terminal sites. The dissolution mechanisms for Al- and Si-terminated sites in protonated, neutral, and deprotonated states are determined using density functional theory calculations. In all protonation states, Si are tetra-coordinated; however, the ability of Al to exist in tetra-, penta-, and hexa-coordination states makes the dissolution mechanisms for the two types of terminal sites fundamentally different. The calculated barrier heights for Al-terminated sites are predicted to be lower than those for Si-terminated sites, a trend that has been observed in experimental studies. The sensitivity of the calculations on the choice of density functionals and basis sets is tested using three functionals: B3LYP, PBE1PBE, and M05-2X, in combination with the 6-311+G(d,p) and MG3S basis sets. For all these calculations, the geometries of the stationary points along the reaction path and the barrier heights are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp8079099DOI Listing

Publication Analysis

Top Keywords

dissolution mechanisms
12
terminal sites
8
si-terminated sites
8
barrier heights
8
basis sets
8
sites
7
initio investigation
4
dissolution
4
investigation dissolution
4
mechanisms aluminosilicate
4

Similar Publications

Anisometric plasmonic nanoparticles find applications in various fields, from photocatalysis to biosensing. However, exposure to heat or to specific chemical environments can induce their reshaping, leading to loss of function. Understanding this process is therefore relevant both for the fundamental understanding of such nano-objects and for their practical applications.

View Article and Find Full Text PDF

Amorphization Stabilizes Te-based Aqueous Batteries via Confining Free Water.

Angew Chem Int Ed Engl

January 2025

Fudan University, Laboratory of Advanced Materials, Shanghai, 200433, Shanghai, CHINA.

Tellurium (Te), with its rich valence states (-2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry.

View Article and Find Full Text PDF

P2-NaMnNiCoO stabilized by optimal active facets for sodium-ion batteries.

J Colloid Interface Sci

January 2025

MOE Key Laboratory for UV Light-Emitting Materials and Technology, Department of Physics, Northeast Normal University, Changchun, Jilin 130024, PR China; Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China. Electronic address:

Considering factors such as crustal reserves, atomic mass, redox potential and energy density, sodium-ion batteries (SIBs) are regarded as the most promising alternative to lithium-ion batteries (LIBs). Transition metal-based layered oxides, especially typical NaMnO, stand out among cathode materials due to their low cost and high energy density. However, NaMnO cathodes face several challenges, including Jahn-Teller distortion, manganese dissolution, structural collapse, irreversible phase transition and significant capacity loss.

View Article and Find Full Text PDF

Aromatic diimides such as naphthalene diimide (NDI) and pyromellitic diimide (MDI) are important building blocks for organic electrode materials. They feature a two-electron redox mechanism that allows for energy storage. Due to the smaller size of MDI compared to NDI its theoretical capacity is higher.

View Article and Find Full Text PDF

Enhanced nano-LC-MS for analyzing dansylated oral cancer tissue metabolome dissolved in solvents with high elution strength.

Anal Chim Acta

February 2025

Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, 333, Taiwan; Clinical Proteomics Core Laboratory, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan. Electronic address:

Background: Tissue metabolomics analysis, alongside genomics and proteomics, offers crucial insights into the regulatory mechanisms of tumorigenesis. To enhance metabolite detection sensitivity, chemical isotope labeling (CIL) techniques, such as dansylation, have been developed to improve metabolite separation and ionization in mass spectrometry (MS). However, the dissolution of hydrophobic derivatized metabolites in solvents with high acetonitrile content limits the use of liquid chromatography (LC) systems with small-volume reversed-phase (RP) columns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!