We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5x10(-7) cm2/min to more than 10(-4) cm2/min, depending on the CO2 pressure and location on the sample.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la801925kDOI Listing

Publication Analysis

Top Keywords

co2 sorption
16
sorption coal
12
mineral matter
12
co2
9
coal pores
8
sorption
5
coal
5
dynamic micromapping
4
micromapping co2
4
coal applied
4

Similar Publications

Layered double hydroxides (LDHs), which resemble hydrotalcite, are a type of materials with cationic layers and exchangeable interlayer anions. They have drawn lots of curiosity as a high-temperature CO2 adsorbent because of its quick desorption/sorption kinetics and renewability. Due to its extensive divalent or trivalent cationic metals, high anion exchange property, memory effect, adjustable behavior, bio-friendliness, easy to prepare and relatively low cost, the LDHs-based materials are becoming increasingly popular for photocatalytic CO2 reduction reaction (CO2RR).

View Article and Find Full Text PDF

Efficient CO2 capture at concentrations between 400-2000 ppm is essential for maintaining air quality in a habitable environment and advancing carbon capture technologies. This study introduces NICS-24 (National Institute of Chemistry Structures No. 24), a Zn-oxalate 3,5-diamino-1,2,4-triazolate framework with two distinct square-shaped channels, designed to enhance CO2 capture at indoor-relevant concentrations.

View Article and Find Full Text PDF

Guest transport through discrete voids (closed pores) in crystalline solids is poorly understood. Herein, we report the gas sorption properties of a nonporous coordination network, [Co(bib)2Cl2]n·2MeOH (sql-bib-Co-Cl-α), featuring square lattice (sql) topology and the bent linker 1,3-bis(1H-imidazol-1-yl)benzene (bib). The as-synthesized sql-bib-Co-Cl-α has 11.

View Article and Find Full Text PDF

Although metal-organic frameworks are coordination-driven assemblies, the structural prediction and design using metal-ligand interactions can be unreliable due to other competing interactions. Leveraging non-coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi-module MOF system to explore important and pervasive impact of ligand-ligand interactions on metal-ligand as well as ligand-ligand co-assembly process.

View Article and Find Full Text PDF

Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!