To investigate the impact of multiple cadmium exposure pathways on bioavailability and bioaccumulation, Caenorhabditis elegans were exposed to either dissolved cadmium or to both particulate (dietborne) and dissolved cadmium. The dietborne metal exposure scenarios included evaluations of two bacteria species (Escherichia coli and Arthrobacter globiformis), varying bacteria concentrations, artificial particles (with different surface functional groups or coated with lipopolysaccharides), as well as a mixture of both bacteria and artificial particles. Total cadmium concentration in the nematodes was used as a proxy for total metal accumulation. Internal cadmium availability was determined using the cadmium-responsive gene-1 (cdr-1) transcript level, as quantified by real-time polymerase chain reaction. Particle-associated exposure was the predominant contributor to cadmium bioavailability and bioaccumulation; however, no clear relationship between cdr-1 expression and cadmium body burden was observed. The quality and quantity of particles, rather than the total particle-associated metal load, was of primary importance in regulating cadmium uptake and accumulation. Nematodes exposed to cadmium-contaminated bacteria displayed significantly higher levels of cdr-1 expression relative to artificial particles. Furthermore, C. elegans displayed a statistically significant difference in cadmium accumulation patterns between the biotic diet, abiotic particles, and aqueous phase. Waterborne exposure caused an increase in total cadmium body burden following inhibition of the P-glycoprotein transport system in nematodes. This may suggest that cadmium taken up by the aqueous phase is detoxified preferentially by excretion.

Download full-text PDF

Source
http://dx.doi.org/10.1897/08-272.1DOI Listing

Publication Analysis

Top Keywords

cadmium
12
bioavailability bioaccumulation
12
artificial particles
12
caenorhabditis elegans
8
dissolved cadmium
8
particles total
8
total cadmium
8
cdr-1 expression
8
cadmium body
8
body burden
8

Similar Publications

Prenatal metal(loid) exposure and preterm birth: a systematic review of the epidemiologic evidence.

J Expo Sci Environ Epidemiol

January 2025

Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Background: Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk.

Objective: We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research.

View Article and Find Full Text PDF

To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.

View Article and Find Full Text PDF

Energy metabolism, antioxidant defense system, metal transport, and ion homeostasis are key contributors to Cd tolerance in SSSL derived from wild rice.

J Hazard Mater

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Cadmium (Cd) toxicity poses major challenges to rice cultivation, affecting plant growth and development. Wild rice and nanoparticles offer promising strategies to enhance Cd tolerance, yet little is known about their combined effects. This study evaluates the single segment substitution line (SG004) from Oryza glumaepatula (wild rice) and its response to Cd stress compared to cultivated rice (HJX74).

View Article and Find Full Text PDF

Multiple insights into differential Cd detoxification mechanisms in new germplasms of mung bean (Vigna radiata L.) and potential mitigation strategy.

Plant Physiol Biochem

December 2024

College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:

Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.

View Article and Find Full Text PDF

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!