In eukaryotes, reversible shuttling between the nucleus and cytoplasm is an important regulatory mechanism, particularly for many kinases and transcription factors. Inspired by the natural system, we recently developed a technology to control protein position in budding yeast using a chemical inducer of dimerization (CID). In this method, a nuclear export or localization signal is reversibly appended to a protein of interest by the CID, which effectively places its subcellular location under direct control of the chemical stimulus. Here, we explicitly tested the ability of this system to direct the nucleocytoplasmic transport of a panel of 16 representative kinases and transcription factors. From this set, we found that 12 targets (75%) are susceptible to re-positioning, suggesting that this method might be applicable to a range of targets. Interestingly, the four proteins that resisted mislocalization (Fun20p, Hcm1p, Pho4p, and Ste12p) are known to engage in a large number of protein-protein contacts. We suspect that, for these highly connected targets, the strength of the chemical signal may be insufficient to drive mislocalization and that proteins with relatively few partners might be most amenable to this approach. Collectively, these studies provide a necessary framework for the design of large-scale applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-009-9044-9 | DOI Listing |
Nano Lett
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.
View Article and Find Full Text PDFSci Rep
January 2025
College of Chemistry and Chemical Engineering, Tarim University, Alar, 843300, Xinjiang, China.
We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.
View Article and Find Full Text PDFCell Death Differ
January 2025
Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis.
View Article and Find Full Text PDFCell Signal
January 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:
Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China. Electronic address:
Theaflavins, oxidation product of tea polyphenols, have demonstrated significant inhibitory effects on α-glucosidase, which is beneficial in alleviating hyperglycemia. This study found that the inhibition of four monomers of theaflavins on α-glucosidase was related to the presence of the galloyl moiety (GM), with IC values ranging from TFDG (0.26 mg/mL) < TF3'G (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!