We investigate theoretically the tuning properties of the resonant mode of the waveguide-grating structures (WGS). This intends to understand how tuning mechanisms of the waveguide resonance mode depend on the structural and the geometric parameters of the WGS device, which can be used as guidance for the design of biosensors and other optoelectronic devices. The device parameters studied here include the angle of incidence, the thickness and refractive index of the waveguide, the period of the grating, and the refractive indices of the substrate and the medium on top of the grating. In particular, the control of the tuning rate and the adjustment of the tuning range by optimizing the combination of the relevant parameters provide a practical route for the design of biosensor and optical switch.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.000426DOI Listing

Publication Analysis

Top Keywords

waveguide-grating structures
8
tuning
5
theoretical analysis
4
analysis tuning
4
tuning dynamics
4
dynamics waveguide-grating
4
structures investigate
4
investigate theoretically
4
theoretically tuning
4
tuning properties
4

Similar Publications

Inverse-Designed Ultra-Compact Passive Phase Shifters for High-Performance Beam Steering.

Sensors (Basel)

November 2024

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Ultra-compact passive phase shifters are inversely designed by the multi-objective particle swarm optimization algorithm. The wavelength-dependent phase difference between two output beams originates from the different distances of the input light passing through the 4 μm × 3.2 μm rectangular waveguide with random-distributed air-hole arrays.

View Article and Find Full Text PDF

Kinetic monitoring of molecular interactions during surfactant-driven self-propelled droplet motion by high spatial resolution waveguide sensing.

J Colloid Interface Sci

January 2025

Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Nanobiosensorics Laboratory, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary. Electronic address:

Hypothesis: Self-driven actions, like motion, are fundamental characteristics of life. Today, intense research focuses on the kinetics of droplet motion. Quantifying macroscopic motion and exploring the underlying mechanisms are crucial in self-structuring and self-healing materials, advancements in soft robotics, innovations in self-cleaning environmental processes, and progress within the pharmaceutical industry.

View Article and Find Full Text PDF

To advance the development of a compact and highly integrated fiber Bragg grating (FBG) interrogation system, to the best of our knowledge, this paper is the first to present the design and fabrication of a monolithic integration chip based on silicon-on-insulator (SOI), which is specifically intended for application in fiber grating sensing interrogation systems. By considering the impact of coupling structure dimensions on coupling efficiency as well as the effect of the photodetector (PD) parameters on the optical absorption efficiency of the device, we refine the structure of the monolithic integrated chip for arrayed waveguide grating (AWG) and PD. The test results reveal that the coupling loss between AWG and PD is -2.

View Article and Find Full Text PDF

In this work, we propose a practical solution to visible vortex laser emission at 532 nm based on second harmonic generation (SHG) in a well-designed waveguide-grating structure. Such an integrated structure is fabricated by femtosecond laser direct writing (FsLDW) in an LBO crystal. Confocal micro-Raman spectroscopy is employed for detailed analysis of FsLDW-induced localized crystalline damage.

View Article and Find Full Text PDF

Virtual reality devices featuring diffractive grating components have emerged as hotspots in the field of near-to-eye displays. The core aim of our work is to streamline the intricacies involved in devising the highly efficient slanted waveguide grating using the deep-learning-driven inverse design technique. We propose and establish a tandem neural network (TNN) comprising a generative flow-based invertible neural network and a fully connected neural network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!