The discovery that gene expression can be controlled by the Watson-Crick base-pairing of small RNAs with messenger RNAs containing complementary sequence - a process known as RNA interference - has markedly advanced our understanding of eukaryotic gene regulation and function. The ability of short RNA sequences to modulate gene expression has provided a powerful tool with which to study gene function and is set to revolutionize the treatment of disease. Remarkably, despite being just one decade from its discovery, the phenomenon is already being used therapeutically in human clinical trials, and biotechnology companies that focus on RNA-interference-based therapeutics are already publicly traded.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702667 | PMC |
http://dx.doi.org/10.1038/nature07758 | DOI Listing |
Int J Mol Sci
November 2024
A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
Cancer is one of the most common diseases in developed countries. Recently, gene therapy has emerged as a promising approach to cancer treatment and has already entered clinical practice worldwide. RNA interference-based therapy is a promising method for cancer treatment.
View Article and Find Full Text PDFNeurotherapeutics
December 2024
Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurosurgery, Brain Research institute, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Tetrahydrobiopterin (BH4) expression is normally strictly controlled; however, its intracellular levels increase considerably following nerve damage. GTP cyclohydrolase I (GCH1) plays a crucial role in regulating BH4 concentration, with an upregulation observed in the dorsal root ganglion in cases of neuropathic pain. In this study, we aimed to develop and evaluate the clinical potential of an RNA interference-based adeno-associated virus (AAV) targeting GCH1 across various species to decrease BH4 levels and, consequently, alleviate neuropathic pain symptoms.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.
Here, a pulmonary formulation based on lipid-polymer hybrid nanoparticles carrying small interfering RNA (siRNA) was developed to realize a RNA interference-based therapy to treat respiratory diseases. Toward this aim, a new copolymer was synthesized, by functionalization of the α,β-poly(-2-hydroxyethyl)-d,l-aspartamide with 35 mol % of 1,2-bis(3-aminopropylamino)ethane, 0.4 mol % of fluorescent dye, and 4.
View Article and Find Full Text PDFDis Model Mech
October 2024
Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA.
Nanoscale Adv
October 2024
Faculty of Medicine and Health Technology, Tampere University Tampere Finland
Proprotein convertase (PCSK) enzymes serve a wide range of regulatory roles in mammals, for example in metabolism and immunity, and altered activity of PCSKs is associated with disorders, such as cardiovascular disease and cancer. Inhibition of PCSK9 activity with therapeutic antibodies or small interfering RNAs is used in the clinic to lower blood cholesterol, and RNA interference -based silencing of () is being evaluated in clinical trials as a cancer treatment. Inhibiting these proteins through vaccine-induced autoantibodies could be a patient-friendly way to reduce the frequency of intervention and the overall price of treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!