The cannabinoid CB1 receptor (CB1) is one of the most abundant G protein-coupled receptors in the brain, but little is known about the mechanisms that modulate CB1 receptor signaling. Here, we show that inhibition or null mutation of the epsilon isozyme of protein kinase C (PKCepsilon) selectively enhances behavioral responses to the CB1 agonist WIN55,212-2 in mice, but not to the structurally unrelated CB1 agonist CP55,940. Binding affinity for [(3)H] WIN55,212-2 was increased in brain membranes from PKCepsilon(-/-) mice compared with PKCepsilon(+/+) mice. There was no difference in binding of the inverse agonist [(3)H] SR141716A. In addition, repeated administration of WIN55,212-2 produced greater analgesic and thermal tolerance in PKCvarepsilon(-/-) mice compared with PKCepsilon(+/+)mice. These results indicate that PKCvarepsilon selectively regulates behavioral sensitivity, CB1 receptor binding and tolerance to WIN55,212-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680927PMC
http://dx.doi.org/10.1038/npp.2008.230DOI Listing

Publication Analysis

Top Keywords

cb1 receptor
16
regulates behavioral
8
behavioral sensitivity
8
binding tolerance
8
agonist win55212-2
8
cb1 agonist
8
mice compared
8
cb1
7
win55212-2
5
pkcepsilon regulates
4

Similar Publications

Electroencephalographic (EEG) recordings in individuals with Fragile X Syndrome (FXS) and the mouse model of FXS ( KO) display cortical hyperexcitability at rest, as well as deficits in sensory-driven cortical network synchrony. A form of circuit hyperexcitability is observed in cortical slices of KO mice as prolonged persistent activity, or Up, states. It is unknown if the circuit mechanisms that cause prolonged Up states contribute to FXS-relevant EEG phenotypes.

View Article and Find Full Text PDF

This narrative review explores the benefits and risks of cannabinoids in kidney health, particularly in individuals with pre-existing renal conditions. It discusses the roles of cannabinoid receptor ligands (phytocannabinoids, synthetic cannabinoids, and endocannabinoids) in kidney physiology. The metabolism and excretion of these substances are also highlighted, with partial elimination occurring via the kidneys.

View Article and Find Full Text PDF

Neuropathy is the most common complication of diabetes, leading to painful symptoms like hyperalgesia. Current treatments for diabetic painful neuropathy often prove inadequate, necessitating the exploration of new pharmacological approaches. Therefore, this study aimed to investigate the potential antinociceptive effect of aspirin-triggered lipoxin A4 (ATL), a specialized pro-resolving lipid mediator, when administered alone or in combination with cannabinoid agonists, to alleviate diabetic neuropathic pain.

View Article and Find Full Text PDF

Cannabinoid type-1 receptors in CaMKII neurons drive impulsivity in pathological eating behavior.

Mol Metab

January 2025

Leibniz Institute for Resilience Research, 55122, Mainz, Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany. Electronic address:

Overconsumption of palatable food and energy accumulation are evolutionary mechanisms of survival when food is scarce. This innate mechanism becomes detrimental in obesogenic environment promoting obesity and related comorbidities, including mood disorders. The endocannabinoid system favors energy accumulation and regulates reward circuits.

View Article and Find Full Text PDF

Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB and its primary transducer, G.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!