Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is needed for retrograde membrane trafficking from lysosomal and late endosomal compartments and its synthesis is tightly regulated. But how cells regulate PtdIns(3,5)P2 synthesis--for example, in response to hyperosmotic shock--remains unexplained. A paper from the Weisman group gives the most complete picture so far of a multiprotein complex that controls PtdIns(3,5)P2 synthesis and explains how a VAC14 mutation functionally impairs the scaffold protein at the heart of the complex and causes a neurodegenerative condition in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634735 | PMC |
http://dx.doi.org/10.1038/emboj.2008.270 | DOI Listing |
Elife
January 2025
Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.
Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.
Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Life Science Institute, University of Michigan, Ann Arbor, MI, USA.
Cell lineage analysis is primarily undertaken to understand cell fate specification and diversification along a cell lineage tree. Built with dual repressible markers, twin-spot mosaic analysis with repressible cell markers (MARCM) labels the two daughter cells made by a common precursor in distinct colors. The power of twin-spot MARCM to systematically subdivide complex lineages is exemplified in studies of Drosophila neural stem-cell lineages.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
During development, cells undergo a sequence of specification events to form functional tissues and organs. To investigate complex tissue development, it is crucial to visualize how cell lineages emerge and to be able to manipulate regulatory factors with temporal control. We recently developed TEMPO (Temporal Encoding and Manipulation in a Predefined Order), a genetic tool to label with different colors and genetically manipulate consecutive cell generations in vertebrates.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA.
Electrophoretic Mobility Shift Assay (EMSA) is a powerful technique for studying nucleic acid and protein interactions. This technique is based on the principle that nucleic acid-protein complex and nucleic acid migrate at different rates due to differences in size and charge. Nucleic acid and protein interactions are fundamental to various biological processes, such as gene regulation, replication, transcription, and recombination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!