How mitogens reduce the abundance of the cell cycle inhibitor p27(Kip1) is an important question, and regulation of p27(Kip1) translation and turnover has been described. Here we show that platelet-derived growth factor (PDGF) reduces the activity of the p27(Kip1) promoter and the abundance of the p27(Kip1) transcript in density-arrested mouse fibroblasts. Inhibition of p27(Kip1) gene expression by PDGF required protein synthesis and histone deacetylase activity but not Akt or ERK activity. PDGF increased the expression of c-Myc in the absence but not presence of a histone deacetylase inhibitor, and c-Myc inhibited p27(Kip1) promoter activity when ectopically expressed in fibroblasts. c-Myc targeted the same region of the p27(Kip1) promoter as did PDGF (deletion analysis) and interacted with this region in vivo (chromatin immunoprecipitation assay). Collectively, these findings suggest that c-Myc mediates the inhibitory effects of PDGF on the p27(Kip1) promoter. We also demonstrate reductions in p27(Kip1) mRNA abundance in primary splenocytes exposed to concanavalin A and in T cells exposed to interleukin-2 (IL-2). In contrast to PDGF in fibroblasts, IL-2 required Akt activity for maximal reductions in p27(Kip1) promoter activity and mRNA abundance in T cells. Thus, mitogens repress p27(Kip1) gene transcription in multiple systems and by multiple mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.8.1.7527DOI Listing

Publication Analysis

Top Keywords

p27kip1 promoter
20
p27kip1 gene
12
p27kip1
11
inhibition p27kip1
8
gene transcription
8
histone deacetylase
8
promoter activity
8
reductions p27kip1
8
mrna abundance
8
pdgf
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!