We recently found that moderate consumption of two unrelated red wines generate from different grape species, a Cabernet Sauvignon and a muscadine wine that are characterized by distinct component composition of polyphenolic compounds, significantly attenuated the development of Alzheimer's disease (AD)-type brain pathology and memory deterioration in a transgenic AD mouse model. Interestingly, our evidence suggests that the two red wines attenuated AD phenotypes through independent mechanisms. In particular, we previously found that treatment with Cabernet Sauvignon reduced the generation of AD-type amyloid-beta (Abeta) peptides. In contrast, evidence from our present study suggests that muscadine treatment attenuates Abeta neuropathology and Abeta-related cognitive deterioration in Tg2576 mice by interfering with the oligomerization of Abeta molecules to soluble high-molecular-weight Abeta oligomer species that are responsible for initiating a cascade of cellular events resulting in cognitive decline. Collectively, our observations suggest that distinct polyphenolic compounds from red wines may be bioavailable at the organism level and beneficially modulate AD phenotypes through multiple Abeta-related mechanisms. Results from these studies suggest the possibility of developing a "combination" of dietary polyphenolic compounds for AD prevention and/or therapy by modulating multiple Abeta-related mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857553PMC
http://dx.doi.org/10.3233/JAD-2009-0916DOI Listing

Publication Analysis

Top Keywords

red wines
12
polyphenolic compounds
12
cognitive deterioration
8
cabernet sauvignon
8
multiple abeta-related
8
abeta-related mechanisms
8
heterogeneity red
4
red wine
4
polyphenolic
4
wine polyphenolic
4

Similar Publications

Resveratrol is a natural polyphenol (stilbenoid), which can be found in grape skin, red wine, blueberries, peanuts and others. The biological properties of resveratrol, in particular antioxidant, anti-inflammatory, anticancer, estrogenic, vasorelaxant and cardioprotective activity, are the main reason for its importance in medicine and pharmacy. Despite all of its advantages, however, there are many problems related to this polyphenolic substance, such as low stability, water insolubility, poor bioavailability and fast metabolism.

View Article and Find Full Text PDF

Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals ( L. subsp. (C.

View Article and Find Full Text PDF

Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.

View Article and Find Full Text PDF

The recovery of polysaccharides (PS) from red grape marc and white grape pomace by enzymatic degradation of their cell walls is an interesting green extraction technique that preserves the structure and bioactivity of PS. The type and dose of enzyme, and the liquid/solid (L/S) ratio in PS extraction were studied using four commercial enzymes. Four different doses per enzyme were used, with tartaric acid as solvent and L/S ratios of 1.

View Article and Find Full Text PDF

: The aim of this study was to evaluate the influence of acidic beverages on the mechanical properties of various dental resin-based materials. : A total number of 160 samples were prepared using four types of resin-based materials-Group A ( = 40): flowable composite, Group B ( = 40): heavy-flow composite, Group C ( = 40): resin-based sealant and Group D ( = 40): nano-hybrid composite. Then, the samples were distributed into four subgroups according to the submersion solution: ( = 10): artificial saliva, ( = 10): coffee, ( = 10): cola and ( = 10): red wine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!