Protein kinase B activity is required for the effects of insulin on lipid metabolism in adipocytes.

Am J Physiol Endocrinol Metab

Department of Experimental Medical Science, Lund University, BMC, C11, SE-221 84 Lund, Sweden.

Published: April 2009

Protein kinase B (PKB) is known to mediate a number of biological responses to insulin and growth factors, its role in glucose uptake being one of the most extensively studied. In this work, we have employed a recently described allosteric inhibitor of PKB, Akti, to clarify the role of PKB in lipid metabolism in adipocytes-a subject that has received less attention. Pretreatment of primary rat and 3T3L1 adipocytes with Akti resulted in dose-dependent inhibition of PKB phosphorylation and activation in response to insulin, without affecting upstream insulin signaling [insulin receptor (IR), insulin receptor substrate (IRS)] or the insulin-induced phosphoinositide 3-kinase (PI3K)-dependent activation of the ERK/p90 ribosomal kinase (RSK) pathway. PKB activity was required for the insulin-induced activation of phosphodiesterase 3B (PDE3B) and for the antilipolytic action of insulin. Moreover, inhibition of PKB activity resulted in a reduction in de novo lipid synthesis and in the ability of insulin to stimulate this process. The regulation of the rate-limiting lipogenic enzyme acetyl-CoA carboxylase (ACC) by insulin through dephosphorylation of S79, which is a target for AMP-activated protein kinase (AMPK), was dependent on the presence of active PKB. Finally, AMPK was shown to be phosphorylated by PKB on S485 in response to insulin, and this was associated with a reduction in AMPK activity. In summary, we propose that PKB is required for the positive effects of insulin on lipid storage and that regulation of PDE3B and AMPK by PKB is important for these effects.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.90596.2008DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
insulin
10
pkb
10
activity required
8
effects insulin
8
insulin lipid
8
lipid metabolism
8
inhibition pkb
8
response insulin
8
pkb activity
8

Similar Publications

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

A Childhood Langerhans Cell Histiocytosis With a Novel BRAFN486_T491delinsK Mutation: Good Response to Conventional Chemotherapy.

J Pediatr Hematol Oncol

January 2025

Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan, China.

Langerhans cell histiocytosis (LCH) is characterized genetically by diverse gene mutations of the mitogen-activated protein kinase signaling cascade. BRAFN486_T491delinsK mutation is a rare mutation that involves the β2-αC ring domain, causing activation of the mitogen-activated protein kinase pathway, and is predicted to be resistant to the chemotherapy and BRAFV600E inhibitor in adult LCH cases. Here, we report a childhood LCH case with this novel BRAF mutation and had a good response to conventional chemotherapy.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!