Amyotrophic lateral sclerosis (ALS), characterized by degeneration of spinal motor neurons, consists of sporadic and familial forms. One cause of familial ALS is missense mutations in the superoxide dismutase 1 (SOD1) gene. Iron accumulation occurs in the CNS of both forms of ALS; however, its contribution to the pathogenesis of ALS is not known. We examined the role of iron in a transgenic mouse line overexpressing the human SOD1(G37R) mutant. We show that multiple mechanisms may underlie the iron accumulation in neurons and glia in SOD1(G37R) transgenic mice. These include dysregulation of proteins involved in iron influx and sensing of intracellular iron; iron accumulation in ventral motor neurons secondary to blockage of anterograde axonal transport; and increased mitochondrial iron load in neurons and glia. We also show that treatment of SOD1(G37R) mice with an iron chelator extends life span by 5 weeks, accompanied by increased survival of spinal motor neurons and improved locomotor function. These data suggest that iron chelator therapy might be useful for the treatment of ALS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665152 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5443-08.2009 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan. Electronic address:
Parkinson's disease (PD) is a neurodegenerative disease primarily affecting the central nervous system and impacting both the motor system and non-motor systems. Although administration of L-DOPA is effective, it is not a fundamental treatment and has side effects such as diurnal fluctuation and dyskinesia, highlighting the need for new treatment methods. There is a growing interest in dopaminergic neuron transplantation as a potential treatment.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, China.
Investigating the physiological mechanisms in the motor cortex during rehabilitation exercises is crucial for assessing stroke patients' progress. This study developed a single-channel Jansen neural mass model to explore the relationship between model parameters and motor cortex mechanisms. Firstly, EEG signals were recorded from 11 healthy participants under 20%, 40%, and 60% maximum voluntary contraction, and alpha rhythm power spectral density characteristics were extracted using the Welch power spectrum method.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Information Technology, Aylol University College, Yarim 547, Yemen.
Background: Neurodegenerative diseases (NGD) encompass a range of progressive neurological conditions, such as Alzheimer's disease (AD) and Parkinson's disease (PD), characterised by the gradual deterioration of neuronal structure and function. This degeneration manifests as cognitive decline, movement impairment, and dementia. Our focus in this investigation is on PD, a neurodegenerative disorder characterized by the loss of dopamine-producing neurons in the brain, leading to motor disturbances.
View Article and Find Full Text PDFGene Ther
January 2025
Departments of Pediatrics and Neurology, Emory University, Atlanta, 30322, Georgia.
Spinal muscular atrophy (SMA) is a progressive disease that affects motor neurons, with symptoms usually starting in infancy or early childhood. Recent breakthroughs in treatments targeting SMA have improved both lifespan and quality of life for infants and children with the disease. Given the impact of these treatments, it is essential to develop methods for managing treatment-induced changes in disease characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!