In this study, we have used a combination of biochemical and molecular biology techniques to demonstrate that the C-terminal tail domain of KIF4 directly interacts with P0, a major protein component of ribosomes. Besides, in dorsal root ganglion neurons, KIF4 and P0, as well as other ribosomal constituents, colocalize in clusters distributed along axons and neuritic tips. RNA interference suppression of KIF4 or expression of KIF4 variants lacking the tail domain or mutations of the ATP-binding site result in accumulation of P0 and other ribosomal proteins at the cell body and in their disappearance from axons. Our results also show one additional function for KIF4 involving an Ezrin-Radixin-Moesin-like domain in the second coiled-coiled region of KIF4. Expression of a KIF4 mutant lacking this domain abolishes the clustering of ribosomal constituents and prevents the anterograde translocation of the cell adhesion molecule L1. Taken together, the present results suggest that by binding to P0 through its tail domain and by using its motor activity, KIF4 is involved in the anterograde trafficking of ribosomal constituents to axons and that by means of its Ezrin-Radixin-Moesin-like domain interacts and transports L1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666601 | PMC |
http://dx.doi.org/10.1074/jbc.M808586200 | DOI Listing |
J Fungi (Basel)
December 2024
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Fungal biota represents important constituents of phyllosphere microorganisms. It is taxonomically highly diverse and influences plant physiology, metabolism and health. Members of the order are distributed worldwide and include devastating plant pathogens as well as endophytes and saprophytes.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada. Electronic address:
Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.
Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.
View Article and Find Full Text PDFPhytomedicine
January 2025
Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China. Electronic address:
Background: Presently, the mitigation and governance of obesity have surfaced as significant public health dilemmas on a global scale. A wealth of studies indicated that the host gut microbiota is instrumental in regulating the interplay between high-fat diet (HFD) intake and the pathogenesis of obesity. Physiological premature fruit drop, a major byproduct of citrus, is rich in a variety of bioactive constituents, yet its potential has remained underutilized for an extended period.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!