Lack of functional dystrophin causes severe Duchenne muscular dystrophy. The subsarcolemmal location of dystrophin, as well as its association with both cytoskeleton and membrane, suggests a role in the mechanical regulation of muscular membrane stress. In particular, phenotype rescue in a Duchenne muscular dystrophy mice model has shown that some parts of the central rod domain of dystrophin, constituted by 24 spectrin-like repeats, are essential. In this study, we made use of rare missense pathogenic mutations in the dystrophin gene and analyzed the biochemical properties of the isolated repeat 23 bearing single or double mutations E2910V and N2912D found in muscle dystrophy with severity grading. No dramatic effect on secondary and tertiary structure of the repeat was found in mutants compared with wild type as revealed by circular dichroism and NMR. Thermal and chemical unfolding data from circular dichroism and tryptophan fluorescence show significant decrease of stability for the mutants, and stopped-flow spectroscopy shows decreased refolding rates. The most deleterious single mutation is the N2912D replacement, although we observe additive effects of the two mutations on repeat stability. Based on three-dimensional structures built by homology molecular modeling, we discuss the modifications of the mutation-induced repeat stability. We conclude that the main forces involved in repeat stability are electrostatic inter-helix interactions that are disrupted following mutations. This study represents the first analysis at the protein level of the consequences of missense mutations in the human dystrophin rod domain. Our results suggest that it may participate in mechanical weakening of dystrophin-deficient muscle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659240 | PMC |
http://dx.doi.org/10.1074/jbc.M805846200 | DOI Listing |
Brain Behav Immun Health
February 2025
Department of Physiology, School of Medicine, University College Cork, Western Road, Cork, Ireland.
Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate Course in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.
View Article and Find Full Text PDFBone
January 2025
Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom; School of Medicine, Dentistry & Nursing, University of Glasgow, United Kingdom. Electronic address:
Background: Long term glucocorticoid treatment in Duchenne Muscular Dystrophy (DMD) is associated with a high incidence of fragility fractures. This systematic review aims to assess the current evidence for pharmacological and non-pharmacological treatment for osteoporosis in children and adults with DMD.
Methods: Three online databases (Embase, Medline, Cochrane Library) were searched for studies that evaluated interventions for treatment or prevention of osteoporosis in DMD.
J Neuroeng Rehabil
January 2025
Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.
Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark.
microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!