The immunological function of the metatherian mammary gland plays a crucial part in neonatal survival of the marsupial young. Marsupial pouch young do not develop adult like immune responses until just prior to leaving the pouch. The immune components of the maternal milk secretions are important during this vulnerable early post-partum period. In addition, infection of the mammary gland has not been recognized in metatherians, despite the ready availability of pathogens in the pouch. Regardless of which, little is known about the immunobiology of the mammary gland and the immune responses of mammary epithelial cells in metatherians. In this study, a molecular approach was utilized to examine the response of tammar (Macropus eugenii) mammary epithelial cells to Escherichia coli derived lipopolysaccharide (LPS) and Staphylococcus aureus derived lipoteichoic acid (LTA). Using custom-made cDNA microarrays, candidate genes were identified in the transciptome, which were involved in antigen presentation, inflammation, cell growth and proliferation, cellular damage and apoptosis. Quantification of mRNA expression of several of these candidate genes, along with seven other genes (TLR4, CD14, TNF-alpha, cathelicidin, PRDX1, IL-5 and ABCG2) associated with innate immunity in LPS and LTA challenged mammary epithelial cells and leukocytes, was assessed for up to 24 h. Differences in genes associated with cellular damage and pro-inflammatory cytokine production were seen between stimulated mammary epithelial cells and leukocytes. LTA challenge tended to result in lower level induction of pro-inflammatory cytokines, increased PRDX1 mRNA levels, suggesting increased oxidative stress, and increased CD14 expression, but in a non-TLR4-dependent manner. The use of functional genomic tools in the tammar identified differences in the response of tammar mammary epithelial cells (MEC) and leukocytes to challenge with LPS and LTA, and validates the utility of the approach. The results of this study are consistent with a model in which tammar mammary epithelial cells have the capacity to elicit a complex and robust immune response to pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2008.12.001DOI Listing

Publication Analysis

Top Keywords

mammary epithelial
28
epithelial cells
28
mammary gland
12
mammary
10
tammar macropus
8
macropus eugenii
8
eugenii mammary
8
lipoteichoic acid
8
immune responses
8
response tammar
8

Similar Publications

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

In vitro antitumor effects of methanolic extracts of three Ganoderema mushrooms.

Sci Rep

January 2025

Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.

Ganoderma mushrooms have a variety of pharmacological activities and may have antitumor effects. Therefore, the antitumor activity of the methanolic fruiting body extracts of three Ganoderma spp. will be evaluated by estimating cell viability, cell cycle parameters and the mode of cellular death.

View Article and Find Full Text PDF

Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase CA I, CA II, CA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the CA I isoform), 7f > 7b > 7c (against the CA II isoform), 7c > 7g > 7a > 7b (against the CA IX isoform), and 7d > 7c > 7g > 7f (against the CA XII isoform).

View Article and Find Full Text PDF

HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents.

View Article and Find Full Text PDF

This chapter reviews tumor-associated myeloid cells, including macrophages, neutrophils, and other innate immune cells, and their multifaceted roles in supporting breast cancer progression and metastasis. In primary tumors, myeloid cells play key roles in promoting tumor epithelial-mesenchymal transition (EMT) and invasion. They can facilitate intravasation (entry into the bloodstream) and colonization, disrupting the endothelial cell layer and reshaping the extracellular matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!