Regulation of protein activity through the oxidation and reduction of cysteines is emerging as an important mechanism in the control of cell-signaling pathways. Protein tyrosine phosphatase 1B (PTP1B), for example, is reversibly inhibited by oxidation at the catalytic cysteine in response to stimulation of cells by insulin or epidermal growth factor. We have conducted structural studies on the redox regulation of PTP1B and have demonstrated that the oxidation of the catalytic cysteine results in the formation of a bond between the sulfur atom of the catalytic cysteine and the amide nitrogen of the neighboring serine. This bond, referred to here as a sulfenamide bond, is reversible upon the addition of glutathione, indicating that this sulfenamide intermediate could function within signaling pathways to protect the cysteine from overoxidation to less readily reducible states. Formation of the sulfenamide bond is accompanied by changes in the tertiary structure at the catalytic site, and these changes may be important for additional regulation of the enzyme. Here, we present methods for preparing crystals ofPTP1B with a sulfenamide bond at the catalytic cysteine. The methods may be adaptable for other proteins that are subject to redox regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-59745-129-1_8 | DOI Listing |
FEBS J
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, Uppsala SE-75120, Sweden.
[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.
View Article and Find Full Text PDFChemSusChem
January 2025
Nanjing Normal University, School of Food Science and Pharmaceutical Engineering, No. 2 Xuelin Road, 210023, Nanjing, CHINA.
Beyond directed evolution, ancestral sequence reconstruction (ASR) has emerged as a powerful strategy for engineering proteins with superior functional properties. Herein, we harnessed ASR to uncover robust PET hydrolase variants, expanding the repertoire of PET-degrading enzymes and providing deeper insights into the underlying mechanisms of PET hydrolysis. As a result, ASR1-PETase, featuring a unique cysteine catalytic site, was discovered.
View Article and Find Full Text PDFGenomics
January 2025
Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Hangzhou Medical College, Linan District, Hangzhou 311300, China. Electronic address:
Background: Ferroptosis is associated with alcoholic hepatitis (AH); however, the underlying mechanisms remain unclear.
Methods: Changes in iron content and oxidative stress in AH patients and in vivo and in vitro models were analyzed. Iron homeostasis pathways in the livers of patients with AH were investigated using RNA sequencing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!