Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Look, no ortho substituents! A series of polycycles were prepared by using a three-component Joullié-Ugi reaction. The rate of rotation about the bond between a highly hindered bridgehead and a phenyl ring with no ortho substituents was measured, and was highly dependent on the substitution. Rotamer half-lives of up to 21 h at 298 K were observed (see figure). Rotamers resulting from this restricted rotation were isolated for the first time.A series of polycycles was prepared by using a three-component Joullié-Ugi reaction. The rate of rotation about the bond between a highly hindered bridgehead and a phenyl ring with no ortho substituents was measured by using, in general, variable-temperature HPLC. The rate of rotation was highly dependent on substitution and rotamer half-lives of up to 21 h at 298 K were observed. Insights into the effect of substitution on the rate of rotation were gleaned through electronic structure calculations on closely related derivatives. Rotamers resulting from restricted rotation about a bond between an sp(3)-hybridised carbon atom and a phenyl ring with no ortho substituents were isolated for the first time, and the equilibration of the separated rotamers was followed by using analytical HPLC. It was demonstrated, for the first time, that a highly hindered environment for the sp(3)-hybridised atom is sufficient for slow bond rotation about a single bond between sp(3)- and sp(2)-hybridised carbon atoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200802127 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!