A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Remarkably slow rotation about a single bond between an sp(3)-hybridised carbon atom and an aromatic ring without ortho substituents. | LitMetric

AI Article Synopsis

  • A series of polycyclic compounds were synthesized using a three-component Joullié-Ugi reaction, focusing on the behavior of rotamers formed due to restricted rotation.
  • The rotation rate of a bond between a hindered carbon and a phenyl ring (with no ortho substituents) was studied, showing significant dependence on the type of substitution present, with rotamer half-lives reaching up to 21 hours at room temperature.
  • This research marked the first successful isolation of rotamers related to this particular bond rotation, providing new insights into the effects of molecular structure on rotational dynamics.

Article Abstract

Look, no ortho substituents! A series of polycycles were prepared by using a three-component Joullié-Ugi reaction. The rate of rotation about the bond between a highly hindered bridgehead and a phenyl ring with no ortho substituents was measured, and was highly dependent on the substitution. Rotamer half-lives of up to 21 h at 298 K were observed (see figure). Rotamers resulting from this restricted rotation were isolated for the first time.A series of polycycles was prepared by using a three-component Joullié-Ugi reaction. The rate of rotation about the bond between a highly hindered bridgehead and a phenyl ring with no ortho substituents was measured by using, in general, variable-temperature HPLC. The rate of rotation was highly dependent on substitution and rotamer half-lives of up to 21 h at 298 K were observed. Insights into the effect of substitution on the rate of rotation were gleaned through electronic structure calculations on closely related derivatives. Rotamers resulting from restricted rotation about a bond between an sp(3)-hybridised carbon atom and a phenyl ring with no ortho substituents were isolated for the first time, and the equilibration of the separated rotamers was followed by using analytical HPLC. It was demonstrated, for the first time, that a highly hindered environment for the sp(3)-hybridised atom is sufficient for slow bond rotation about a single bond between sp(3)- and sp(2)-hybridised carbon atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200802127DOI Listing

Publication Analysis

Top Keywords

ring ortho
16
ortho substituents
16
rate rotation
16
rotation bond
12
highly hindered
12
phenyl ring
12
rotation
8
rotation single
8
single bond
8
bond sp3-hybridised
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!