A supranutritional intake of selenium (Se) may be required for cancer prevention, but an excessively high dose could be toxic. Therefore, the effect on genome stability of seleno-L-methionine (Se-met), the most important dietary form of Se, was measured to determine its bioefficacy and safety limit. Peripheral blood lymphocytes were isolated from six volunteers and cultured with medium supplemented with Se-met in a series of Se concentrations (3, 31, 125, 430, 1880 and 3850 microg Se/litre) while keeping the total methionine (i.e. Se-met + L-methionine) concentration constant at 50 microM. Baseline genome stability of lymphocytes and the extent of DNA damage induced by 1.5-Gy gamma-ray were investigated using the cytokinesis-block micronucleus cytome assay after 9 days of culture in 96-microwell plates. High Se concentrations (>or=1880 microg Se/litre) caused strong inhibition of cell division and increased cell death (P < 0.0001). Baseline frequency of nucleoplasmic bridges and nuclear buds, however, declined significantly (P trend < 0.05) as Se concentration increased from 3 to 430 microg Se/litre. Se concentration (
Download full-text PDF
Source
http://dx.doi.org/10.1093/mutage/gen074 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!