Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in the pathogenesis of inflammatory disorders such as infection, sepsis, and autoimmune disease. MIF exists preformed in cytoplasmic pools and exhibits an intrinsic tautomerase and oxidoreductase activity. MIF levels are elevated in the serum of animals and patients with infection or different inflammatory disorders. To elucidate how MIF actions are controlled, we searched for endogenous MIF-interacting proteins with the potential to interfere with key MIF functions. Using in vivo biotin-tagging and endogenous co-immunoprecipitation, the ribosomal protein S19 (RPS19) was identified as a novel MIF binding partner. Surface plasmon resonance and pulldown experiments with wild type and mutant MIF revealed a direct physical interaction of the two proteins (K(D) = 1.3 x 10(-6) m). As RPS19 is released in inflammatory lesions by apoptotic cells, we explored whether it affects MIF function and inhibits its binding to receptors CD74 and CXCR2. Low doses of RPS19 were found to strongly inhibit MIF-CD74 interaction. Furthermore, RPS19 significantly compromised CXCR2-dependent MIF-triggered adhesion of monocytes to endothelial cells under flow conditions. We, therefore, propose that RPS19 acts as an extracellular negative regulator of MIF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658091 | PMC |
http://dx.doi.org/10.1074/jbc.M808620200 | DOI Listing |
Histol Histopathol
December 2024
Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
Recent advancements in single-cell spatial proteomics have revolutionized our ability to elucidate cellular signaling networks and their implications in health and disease. This review examines these cutting-edge technologies, focusing on mass spectrometry (MS) imaging and multiplexed immunofluorescence (mIF). Such approaches allow high-resolution protein profiling at the single-cell level, revealing intricate cellular heterogeneity, spatial organization, and protein functions within their native cellular contexts.
View Article and Find Full Text PDFPsychopharmacol Bull
January 2025
Oslin, MD, Veterans Integrated Service Network 4, Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center and Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
Background: Immunologic measures have been studied as predictors of who will respond to standard antidepressants. Two previous, small studies of pretreatment leukocyte mRNA expression levels of the cytokines macrophage migration inhibitory factor (MIF) and interleukin 1-beta (IL1-β) identified antidepressant treatment responders.
Methods: We tested these findings in 1,299 patients from the PRIME Care study, a multi-center pharmacogenetic depression treatment trial.
Front Immunol
December 2024
Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan.
Background: Studies have shown that tumor cell amino acid metabolism is closely associated with lung adenocarcinoma (LUAD) development and progression. However, the comprehensive multi-omics features and clinical impact of the expression of genes associated with amino acid metabolism in the LUAD tumor microenvironment (TME) are yet to be fully understood.
Methods: LUAD patients from The Cancer Genome Atlas (TCGA) database were enrolled in the training cohort.
Curr Issues Mol Biol
November 2024
Department of Anatomy and Neurosciences, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
Ischemic stroke is a leading contributor to death and disability worldwide, driving extensive research into pharmacological treatments beyond thrombolysis. Macrophage migration inhibitory factor (MIF), a cytokine, is implicated in several pathological conditions. In this study, we examined the effects of MIF on autophagy in astrocytes under the condition of chemical hypoxia.
View Article and Find Full Text PDFAntibodies (Basel)
December 2024
OncoOne Research & Development GmbH, Karl-Farkas-Gasse 22, A-1030 Vienna, Austria.
Background: Rigorous assessment of antibody developability is crucial for optimizing lead candidates before progressing to clinical studies. Recent advances in predictive tools for protein structures, surface properties, stability, and immunogenicity have streamlined the development of new biologics. However, accurate prediction of the impact of single amino acid substitutions on antibody structures remains challenging, due to the diversity of complementarity-determining regions (CDRs), particularly CDR3s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!