Background/aims: Peroxisome proliferator-activated receptor gamma (PPARgamma) agonist drugs, like pioglitazone (PGZ), are proposed as treatments for steatohepatitis. Their mechanisms of action remain ill-clarified.

Methods: To test the hypothesis that PGZ improves steatohepatitis through adiponectin-dependent stimulation of AMPK and/or PPARalpha, mice lacking adiponectin (Adipo(-/-)) or the AMPKalpha1 catalytic subunit (AMPKalpha1(-/-)) or wild-type (Wt) mice were fed the methionine and choline deficient (MCD) diet, supplemented or not with PGZ.

Results: In Wt mice, PGZ increased circulating levels of adiponectin and reduced the severity of MCD-induced steatohepatitis but there was no evidence of activation of AMPK or PPARalpha and their downstream targets. By contrast, PGZ completely repressed nuclear translocation of SREBP-1c, a key transcription factor for de novo lipogenesis. This effect was lacking in Adipo(-/-) mice in which PGZ failed to prevent steatohepatitis. Surprisingly, AMPKalpha1(-/-) mice were resistant to MCD-induced steatohepatitis, a status also associated with repression of SREBP-1c.

Conclusions: The preventive effect of PGZ on MCD-induced steatohepatitis depends on adiponectin upregulation but apparently does not involve AMPK or PPARalpha activation. The inhibition of SREBP-1c and dependent repression of lipogenesis are likely to participate in this effect. The mechanisms by which PGZ and adiponectin control SREBP-1c and inflammation remain to be elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2008.10.027DOI Listing

Publication Analysis

Top Keywords

mcd-induced steatohepatitis
12
inhibition srebp-1c
8
srebp-1c inflammation
8
mice pgz
8
ampk pparalpha
8
pgz
7
steatohepatitis
6
mice
5
prevention steatohepatitis
4
steatohepatitis pioglitazone
4

Similar Publications

Aqueous extract of Cornus officinalis alleviate NAFLD via protecting hepatocytes proliferation through regulation of the tricarboxylic acid cycle.

J Ethnopharmacol

January 2025

International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China. Electronic address:

Ethnopharmacological Relevance: Cornus officinalis (CO) has been widely used as Chinese herbal medicine and has a good clinical efficacy in liver disease. In particular, it has a significant therapeutic effect on metabolic liver disease. However, systematic pharmacological studies on its hepatoprotective effect on non-alcoholic fatty liver disease (NAFLD) are lacking.

View Article and Find Full Text PDF

Inhibition of hepatic PCSK9 as a novel therapeutic target ameliorates metabolic steatohepatitis in mice.

Int Immunopharmacol

December 2024

Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China. Electronic address:

Background & Aims: Metabolic steatohepatitis (MASH) is closely related to metabolic disorders, and the main characteristics of MASH are hepatocyte steatosis with hepatocyte injury and inflammation. In severe cases, MASH can develop into liver cirrhosis. At present, there is no effective treatment for MASH.

View Article and Find Full Text PDF

Aim: Pyroptosis, a type of programmed cell death, is a key mechanism underlying non-alcoholic fatty liver disease (NAFLD). Mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos) have the potential to ameliorate NAFLD, an effect that is enhanced by curcumin preconditioning. We previously reported that diabetic microenvironment preconditioning enhances the secretion capacity and anti-inflammatory activity of MSCs.

View Article and Find Full Text PDF

USP9X-enriched MSC-sEV inhibits LSEC angiogenesis in MASH mice by downregulating the IκBα/NF-κB/Ang-2 pathway.

Pharmacol Res

November 2024

Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China. Electronic address:

Pathological angiogenesis of liver sinusoidal endothelial cells (LSEC) plays a crucial role in the progression of metabolic dysfunction-associated steatohepatitis (MASH)-induced liver fibrosis. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have shown promising therapeutic potential against MASH. This study aimed to investigate the impact of MSC-sEV on LSEC angiogenesis and elucidate the underlying molecular mechanisms.

View Article and Find Full Text PDF

Salidroside may target PPARα to exert preventive and therapeutic activities on NASH.

Front Pharmacol

October 2024

Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.

Background: Salidroside (SDS), a phenylpropanoid glycoside, is an antioxidant component isolated from the traditional Chinese medicine and has multifunctional bioactivities, particularly possessing potent hepatoprotective function. Non-alcoholic steatohepatitis (NASH) is one of the most prevalent chronic liver diseases worldwide, but it still lacks efficient drugs. This study aimed to assess the preventive and therapeutic effects of SDS on NASH and its underlying mechanisms in a mouse model subjected to a methionine- and choline-deficient (MCD) diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!