The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2008.11.071DOI Listing

Publication Analysis

Top Keywords

cp4 epsps
12
stable isotope
8
genetically modified
8
evaluation stable
4
isotope labelling
4
labelling strategies
4
strategies quantitation
4
quantitation cp4
4
epsps genetically
4
modified soya
4

Similar Publications

Multi-chromatic and multi-component lateral flow immunoassay for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified crops.

Mikrochim Acta

December 2024

Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.

A multi-chromatic and multi-component lateral flow immunoassay (MCMC-LFIA) was developed for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified (GM) crops. Captured antibodies specific to these exogenous proteins were separately immobilized on a nitrocellulose membrane as test zones. Multi-colored microspheres, used as visible multi-probes, were conjugated with corresponding antibodies and sprayed on the conjugate pad.

View Article and Find Full Text PDF

Eucalyptus stands out as one of the most productive tree species for large-scale cultivation. However, like all cultivated crops, it requires specialized management practices, including the control of weeds, pathogens, and pests. Glyphosate is the most widely applied herbicide used in the essential weeding effort, and it ensures the sustainable management of eucalyptus cultivation in Brazil.

View Article and Find Full Text PDF

"Blue-red-purple" multicolored lateral flow immunoassay for simultaneous detection of GM crops utilizing RPA and CRISPR/Cas12a.

Talanta

January 2025

The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China; Crops Ecological Environment Security Inspection and Supervision Center, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co. Ltd., Shanghai, 201106, China. Electronic address:

Article Synopsis
  • * A new platform using a "Blue-Red-Purple" strategy combines recombinant polymerase amplification, CRISPR/Cas12a, and a lateral flow strip for dual-target detection of GM crop markers.
  • * This method is highly specific and sensitive, with results visible through colored microspheres, and can be completed in 50 minutes without complex equipment, making it ideal for on-site testing.
View Article and Find Full Text PDF

Assessment of the potential risks in SD rats gavaged with genetically modified yeast containing the gene.

Front Vet Sci

August 2024

Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China.

Introduction: Despite the absence of definitive evidence indicating that the cp4-epsps gene and its resultant recombinant proteins have significant harmful effects on either human or animal health, the safety assessment of genetically modified (GM) crops expressing the CP4-EPSPS proteins has been controversial. This study endeavor was aimed at evaluating the potential risks posed by the CP4-EPSPS protein in transgenic crops, thereby contributing to the advancement of risk assessment methodologies in the context of genetically engineered crops.

Methods: To ascertain the appropriate daily dosages for oral gavage administration, the expression levels of the CP4-EPSPS protein in a recombinant yeast were quantified.

View Article and Find Full Text PDF

Protein-based detection methods, enzyme-linked immunosorbent assays (ELISAs) and lateral flow strips, have been widely used for rapid, specific, and sensitive detection of genetically modified organisms (GMOs). However, the traditional ELISA method for the quantitative detection of GMOs has certain limitations. Herein, a quantum dot (QD)-based fluorescence-linked immunosorbent assay was developed using QDs as fluorescent markers for the detection of glyphosate-resistant protein (CP4-EPSPS) in the MON89788 soybean.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!