[Nephrocytes and podocytes, even fight?].

Med Sci (Paris)

Published: January 2009

Download full-text PDF

Source
http://dx.doi.org/10.1051/medsci/200925127DOI Listing

Publication Analysis

Top Keywords

[nephrocytes podocytes
4
podocytes fight?]
4
[nephrocytes
1
fight?]
1

Similar Publications

Due to their position on glomerular capillaries, podocytes are continuously counteracting biomechanical filtration forces. Most therapeutic interventions known to generally slow or prevent the progression of chronic kidney disease appear to lower these biomechanical forces on podocytes, highlighting the critical need to better understand podocyte mechano-signalling pathways. Here we investigated whether the mechanotransducer Piezo is involved in a mechanosensation pathway in Drosophila nephrocytes, the podocyte homologue in the fly.

View Article and Find Full Text PDF

Drosophila nephrocytes are specialised cells that share critical functional, morphological, and molecular features with mammalian podocytes. Accordingly, nephrocytes represent a preferred invertebrate model for human glomerular disease. Here, we established a method for cell-specific isolation of the two types of Drosophila nephrocytes, garland and pericardial cells, from animals of different developmental stages and ages.

View Article and Find Full Text PDF

In children, 15% of nephrotic syndromes are steroid-resistant (SRNS); approximately 30% of early onset SRNS have a genetic origin, with more than 100 causal genes described so far. SRNS can be syndromic, if associated with signs and symptoms affecting other organs or systems, such as the central nervous system, the heart or the eyes. Patients with SRNS are at high risk of chronic kidney disease and progressive renal failure, and as such need multidisciplinary care, centred on renal protection.

View Article and Find Full Text PDF

Actin Cytoskeleton and Integrin Components Are Interdependent for Slit Diaphragm Maintenance in Nephrocytes.

Cells

August 2024

Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA.

In nephrotic syndrome, the podocyte filtration structures are damaged in a process called foot process effacement. This is mediated by the actin cytoskeleton; however, which actins are involved and how they interact with other filtration components, like the basement membrane, remains poorly understood. Here, we used the well-established pericardial nephrocyte-the equivalent of podocytes in flies-knockdown models (RNAi) to study the interplay of the actin cytoskeleton (Act5C, Act57B, Act42A, and Act87E), alpha- and beta-integrin (basement membrane), and the slit diaphragm (Sns and Pyd).

View Article and Find Full Text PDF

Mitochondria are crucial for cellular ATP production. They are highly dynamic organelles, whose morphology and function are controlled through mitochondrial fusion and fission. The specific roles of mitochondria in podocytes, the highly specialized cells of the kidney glomerulus, remain less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!