Despite the abundance of iron in nature, it is the third most limiting nutrient for plants due to its minimal solubility in most soils. While certain soil microbes produce chelating agents that enhance the solubility of iron, the effectiveness of such siderophores in the assimilation of iron by plants is debated. With an increasing understanding that select soil microbes play a signaling role in activating growth and stress responses in plants, the question arises as to whether such symbionts regulate iron assimilation. Here we report a previously unidentified mechanism in which the growth-promoting bacterium Bacillus subtilis GB03 activates the plant's own iron acquisition machinery to increase assimilation of metal ions in Arabidopsis. Mechanistic studies reveal that GB03 transcriptionally up-regulates the Fe-deficiency-induced transcription factor 1 (FIT1), which is necessary for GB03-induction of ferric reductase FRO2 and the iron transporter IRT1. In addition, GB03 causes acidification of the rhizosphere by enhancing root proton release and by direct bacterial acidification, thereby facilitating iron mobility. As a result, GB03-exposed plants have elevated endogenous iron levels as well as increased photosynthetic capacity compared with water-treated controls. In contrast, loss-of-function fit1-2 mutants are compromised in terms of enhanced iron assimilation and photosynthetic efficiency triggered by GB03. In all studies reported herein, a physical partition separating roots from bacterial media precludes non-volatile microbial siderophores from contributing to GB03-stimulated iron acquisition. These results demonstrate the potential of microbes to control iron acquisition in plants and emphasize the sophisticated integration of microbial signaling in photosynthetic regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2009.03803.xDOI Listing

Publication Analysis

Top Keywords

iron
12
iron acquisition
12
soil microbes
8
iron assimilation
8
plants
5
soil bacterium
4
bacterium regulates
4
regulates plant
4
acquisition
4
plant acquisition
4

Similar Publications

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

The Jezero crater floor features a suite of related, iron-rich lavas that were examined and sampled by the Mars 2020 rover Perseverance, and whose textures, minerals, and compositions were characterized by the Planetary Instrument for X-ray Lithochemistry (PIXL). This suite, known as the Máaz formation (fm), includes dark-toned basaltic/trachy-basaltic rocks with intergrown pyroxene, plagioclase feldspar, and altered olivine and overlying trachy-andesitic lava with reversely zoned plagioclase phenocrysts in a K-rich groundmass. Feldspar thermal disequilibrium textures indicate that they were carried from their crustal staging area.

View Article and Find Full Text PDF

Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.

View Article and Find Full Text PDF

Pomegranate peel powder is used as a functional ingredient in the development of nutritional bars. Pomegranate (Punica granatum) is well known fruit belongs to punicaceae family having multiple health benefits, not only limited to its edible parts but also in its non-edible parts mostly the peel. Fruit wastes are rich source of nutrients, and can be used for the development of functional food products.

View Article and Find Full Text PDF

Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.

Adv Healthc Mater

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!