Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The magnetic microstructure in a Co-CoO obliquely evaporated tape that was subjected to a recording bit length of 250 nm was studied using electron holography. The reconstructed phase image demonstrated a periodic pattern of magnetic flux loops that were inclined to the film normal due to a well-developed columnar structure. When a magnetic field was applied to the tape for observing the remanent state by holography, the periodic pattern of the flux loops gradually disappeared. Interestingly, on applying a large magnetic field, the contour lines in the reconstructed phase image became approximately parallel to the longitudinal axis of the sliced tape, i.e. the contour lines were made to virtually deviate from the easy magnetization axis. The observations were supported by a computer simulation in which the effect of the stray magnetic field was considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jmicro/dfn033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!