Unlabelled: The feasibility of ex vivo gene therapy as an alternative to liver transplantation for the treatment of liver metabolic diseases needs to be analyzed in large animal models. This approach requires appropriate gene transfer vectors and effective hepatocyte engraftment. Lentiviral vectors have the ability to transduce nondividing differentiated cells, such as hepatocytes, and portal vein occlusion increases hepatocyte engraftment. We investigated whether reversible portal vein embolization combined with ex vivo lentivirus-mediated gene transfer is an effective approach for successful hepatocyte engraftment in nonhuman primates and whether the transgene remains expressed in the long term in transplanted hepatocytes in situ. Simian hepatocytes were isolated after left lobe resection, and the left and right anterior portal branches of animals were embolized with absorbable material. Isolated hepatocytes were labeled with Hoechst dye or transduced in suspension with lentiviruses expressing green fluorescent protein under the control of the human apolipoprotein A-II promoter and transplanted via the inferior mesenteric vein. The whole procedure was well tolerated. The embolized liver was revascularized within 2 weeks. The volume of nonembolized liver increased from 38.7% +/- 0.8% before embolization to 55.9% +/- 1% after embolization and hepatocytes significantly proliferated (10.5% +/- 0.4% on day 3 after embolization). Liver repopulation after transplantation with Hoechst-labeled hepatocytes was 7.4% +/- 1.2%. Liver repopulation was 2.1% +/- 0.2% with transduced hepatocytes, a proportion similar to that obtained with Hoechst-labeled cells, given that the mean transduction efficacy of simian hepatocyte population was 34%. Transgene expression persisted at 16 weeks after transplantation.
Conclusion: We have developed a new approach to improve hepatocyte engraftment and to express a transgene in the long term in nonhuman primates. This strategy could be suitable for clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.22739 | DOI Listing |
J Hepatol
January 2025
Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom. Electronic address:
Background & Aims: Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
Background: Xenogeneic transplantation induces acute graft-versus-host disease (aGvHD) and subsequent vital organ damage. Herein, we aimed to examine hepatic damage associated with aGvHD using histopathology and gene expression profiles.
Methods: A xenografic GvHD model was established by engrafting human peripheral blood mononuclear cells (PBMCs) into immunodeficient NOD-scid IL2Rγnull (NSG) mice after busulfan conditioning.
J Mater Chem B
December 2024
Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
The limited replicative potential of primary hepatocytes (Hep) is a major hurdle for obtaining sufficient quantity and quality hepatocytes during cell therapy in patients with liver failure. Intrahepatic cholangiocyte organoids (ICOs) derived from intrahepatic bile ducts differentiate into both hepatocytes and cholangiocytes . Here, we studied effects of transplanting ICOs and Hep in chronic liver injury mice models.
View Article and Find Full Text PDFBlood Adv
December 2024
Case Western Reserve University, Cleveland, Ohio, United States.
Chin Med J (Engl)
December 2024
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Liver disease involves a complex interplay of pathological processes, including inflammation, hepatocyte necrosis, and fibrosis. End-stage liver disease (ESLD), such as liver failure and decompensated cirrhosis, has a high mortality rate, and liver transplantation is the only effective treatment. However, to overcome problems such as the shortage of donor livers and complications related to immunosuppression, there is an urgent need for new treatment strategies that need to be developed for patients with ESLD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!