Two major polysaccharide fractions, WPS-1 and APS-2, were isolated from water-soluble and alkali-soluble extracts of Huaza No. 4 rapeseed meal with a stepwise procedure of D3520 macroporous adsorption resin column chromatography, ethanol precipitation, and DE-52 cellulose column chromatography. Physicochemical properties of the polysaccharides were determined by chemical methods, high -performance liquid chromatography (HPLC), gel permeation chromatography (GPC), and Fourier transform infrared spectrometry (FT-IR). The chemiluminescence (CL) method was used to investigate the free radical scavenging activity of the polysaccharide fractions. The polysaccharides were primarily polymers of arabinose, galactose, and glucose, associated with protein portions consisting of 13 different amino acids. The average molecular masses of WPS-1 and APS-2 were 7.20 x 10(5) and 1.61 x 10(5) Da, respectively. Compared with APS-2, WPS-1 was more effective at scavenging superoxide radical (O(2)(*-)) and hydroxyl radical (HO(*)), but less effective at scavenging hydrogen peroxide (H(2)O(2)). In decreasing order, the free radical scavenging activity of WPS-1 and APS-2 toward reactive oxygen species (ROS) was H(2)O(2) > HO(*) > O(2)(*-).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf802687t | DOI Listing |
J Agric Food Chem
February 2009
Laboratory of Functional Food and Nutrition, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
Two major polysaccharide fractions, WPS-1 and APS-2, were isolated from water-soluble and alkali-soluble extracts of Huaza No. 4 rapeseed meal with a stepwise procedure of D3520 macroporous adsorption resin column chromatography, ethanol precipitation, and DE-52 cellulose column chromatography. Physicochemical properties of the polysaccharides were determined by chemical methods, high -performance liquid chromatography (HPLC), gel permeation chromatography (GPC), and Fourier transform infrared spectrometry (FT-IR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!