Solution structure of the DNA binding domain of rice telomere binding protein RTBP1.

Biochemistry

Department of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea.

Published: February 2009

RTBP1 is a rice telomeric protein that binds to the duplex array of TTTAGGG repeats at chromosome ends. The DNA binding domain of RTBP1 contains a Myb-type DNA binding motif and a highly conserved C-terminal Myb extension that is unique to plant telomeric proteins. Using an electrophoretic mobility shift assay, we identified the C-terminal 110-amino acid region (RTBP1(506-615)) as the minimal telomeric DNA binding domain, suggesting that the Myb extension is required for binding plant telomeric DNA. Like other telomeric proteins such as human TRF1 and yeast Rap1, RTBP1 induced a DNA bending in the telomeric repeat sequence, suggesting that RTBP1 may play a role in establishing and/or maintaining an active telomere configuration in vivo. To elucidate the DNA binding mode of RTBP1, we determined the three-dimensional structure of RTBP1(506-615) in solution by NMR spectroscopy. The overall structure of RTBP1(506-615) is composed of four alpha-helices and stabilized by three hydrophobic patches. The second and third helices in RTBP1 form a helix-turn-helix motif that interacts directly with DNA. The fourth helix located in the Myb extension is essential for binding to telomeric DNA via stabilization of the overall structure of the RTBP1 DNA binding domain. When DNA bound to RTBP1(506-615), large chemical shift perturbations were induced in the N-terminal arm, helix 3, and the loop between helices 3 and 4. These results suggest that helix 3 functions as a sequence-specific recognition helix while the N-terminal arm stabilizes the DNA binding.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi801270gDOI Listing

Publication Analysis

Top Keywords

dna binding
28
binding domain
16
dna
12
myb extension
12
telomeric dna
12
binding
10
rtbp1
8
plant telomeric
8
telomeric proteins
8
structure rtbp1506-615
8

Similar Publications

Background: Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars.

View Article and Find Full Text PDF

The proliferation-specific oncogenic transcription factor, FOXM1 is overexpressed in primary and recurrent breast tumors across all breast cancer (BC) subtypes. Intriguingly, FOXM1 overexpression was found to be highest in Triple-negative breast cancer (TNBC), the most aggressive BC with the worst prognosis. However, FOXM1-mediated TNBC pathogenesis is not completely elucidated.

View Article and Find Full Text PDF

The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

De novo shoot regeneration, characterized by the emergence of adventitious shoots from excised or damaged tissues or organs in vitro, is regulated by the complex interplay between genetic and epigenetic regulatory mechanisms. However, the specific effect of histone deacetylation on shoot regeneration remains poorly understood. This study investigated the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on shoot regeneration in callus derived from root explants.

View Article and Find Full Text PDF

Lung cancer (LC) is a crucial rapidly developing disease. In Egypt, it is one of the five most frequent cancers. Little is known about the impact of deleted mismatch repair genes and its correlation to clinicopathological characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!