Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have studied Ge halide passivation and formation of 1-octadecanethiolate self-assembled monolayers (SAMs) at Cl- and Br-terminated Ge(100) and Ge(111) surfaces. The results of water contact angle measurements, ellipsometry, transmission infrared spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy show that good quality 1-alkanethiolate SAMs can be achieved at both Cl- and Br-terminated surfaces via direct Ge-S bonds. The quality of the SAMs depends on the concentration and the solvent of the 1-alkanethiol solution. Moreover, SAMs formed at Ge(100) surfaces have higher water contact angles, thicknesses, and ambient stability than those formed at Ge(111) surfaces. Surface passivation and light are found to play an important role in the packing and stability of the SAMs. Furthermore, well-packed SAMs can be retrieved by repassivation after degradation due to ambient exposure. This work presents novel routes for Ge surface passivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la803468e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!