Aim: Oxidative stress plays a critical role in the pathogenic cascade leading to neuronal degeneration in AD. Consequently, the induction of endogenous antioxidative proteins by antioxidants seems to be a very reasonable strategy for delaying the disease's progression. In previous work, we identified the neurotrophic and neuroprotective effects of geniposide, which result from the activation of glucagon-like peptide 1 receptor (GLP-1R). In this study, we explore the role of PI3 kinase signaling pathway in the neuroprotection of geniposide in PC12 cells.
Methods: Cell viability was determined by MTT assay. Apoptosis was detected by Hoechst and PI double staining. The protein expression of Bcl-2 and phosphorylation of Akt308, Akt473, GSK-3beta, and PDK1 was measured by Western blot.
Results: Geniposide induced the expression of the antiapoptotic protein Bcl-2, which inhibited apoptosis in PC12 cells induced by H(2)O(2), and this effect could be inhibited by preincubation with LY294002, a selective inhibitor of PI3K. Furthermore, geniposide enhanced the phosphorylation of Akt308, Akt473, GSK-3beta and PDK1 under conditions of oxidative stress.
Conclusion: These results demonstrate that the PI3K signaling pathway is involved in the neuroprotection of geniposide in PC12 cells against the oxidative damage induced by H(2)O(2) in PC12 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002468 | PMC |
http://dx.doi.org/10.1038/aps.2008.25 | DOI Listing |
Cytotechnology
February 2025
Department of Neurology, Hubei Provincial Hospital of Integrated Traditional and Western Medicine, Jianghan District, No. 11 Lingjiaohu Road, Wuhan, 430015 China.
Unlabelled: Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Neurology, Chonggang General Hospital, Chongqing 400081, China.
Parkinson's disease (PD) is a type of chronic neurodegenerative disorder. There is an ongoing need for the development of new medications to address this illness. Loureirin C is known to have a protective impact on neurological disorders.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran.
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.
View Article and Find Full Text PDFFoods
January 2025
Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea.
Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!